基于PointNet的车身分割方法  被引量:3

Segmentation method of car body based on PointNet

在线阅读下载全文

作  者:阮剑 朱连海 胡三宝[1,2] RUAN Jian;ZHU Lianhai;HU Sanbao(Hubei Key Laboratory of Advanced Technology for Automotive Conponents,Wuhan University of Technology,Wuhan 430070,China;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology,Wuhan 430070,China;Bohai Shipbuilding Heavy Industry Co.,Ltd.,Huludao 125005,China)

机构地区:[1]武汉理工大学现代汽车零部件技术湖北省重点实验室,湖北武汉430070 [2]武汉理工大学汽车零部件技术湖北省协同创新中心,湖北武汉430070 [3]渤海造船厂集团有限公司,辽宁葫芦岛125005

出  处:《武汉大学学报(工学版)》2023年第3期347-352,共6页Engineering Journal of Wuhan University

基  金:国家自然科学基金资助项目(编号:51305314)。

摘  要:多视图参数化重构方法对车身拓扑优化结果进行重构时需将车身分割为多个独立部分,以达到分割后拓扑优化车身各部分可独立进行重构的目的。对以车身点云作为输入的分割方法进行研究,采用深度学习理论对PointNet网络框架进行改进,根据车身拓扑优化结果,基于多视图参数化重构方法将车身分割为多个部分并赋予标签,并使用CAD(computer aided design)制作及点云增强操作得到车身分割点云数据集,通过梯度下降算法对网络模型进行训练。最终,车身分割网络模型在车身点云测试集中的准确率为87.7%。The multi-view parametric reconstruction method needs to divide the car body into multiple independent parts to reconstruct the result of car body topology optimization,so that each part of the topology optimized car body can be reconstructed independently after segmentation.The intelligent segmentation method of car body point cloud as input is studied,and the deep learning theory is used to improve the PointNet network framework.The car body is divided into several parts and given labels based on multi-view parametric reconstruction method according to the body topology optimization result contents.The car body segmentation point cloud data set is obtained by CAD(computer aided design)production and point cloud enhancement operation,and the network model is trained by gradient descent algorithm.Finally,the car body segmentation network model achieves 87.7%accuracy in the car body point cloud test set.

关 键 词:承载式车身 几何重构 点云分割 深度学习 PointNet 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象