求解非线性伪抛物方程的重心Lagrange插值配点法  被引量:1

Barycentric Lagrange interpolation collocation method for solving nonlinear pseudo-parabolic equations

在线阅读下载全文

作  者:屈金铮 李金 苏晓宁 QU Jin-zheng;LI Jin;SU Xiao-ning(College of Science,North China University of Science and Technology,Tangshan 063210,Hebei,China;Hebei Key Laboratory of Data Science and Application,Tangshan 063210,Hebei,China)

机构地区:[1]华北理工大学理学院,河北唐山063210 [2]河北省数据科学与应用重点实验室,河北唐山063210

出  处:《山东大学学报(理学版)》2023年第4期29-39,共11页Journal of Shandong University(Natural Science)

基  金:河北省自然科学基金资助项目(A2019209533)。

摘  要:提出了重心Lagrange插值配点法求解一类非线性伪抛物方程。首先,介绍了重心Lagrange插值并给出了微分矩阵表达式。其次,构造了求解非线性伪抛物方程的直接线性化迭代格式、部分线性化迭代格式、Newton线性化迭代格式。再次,未知函数和初边值条件利用重心Lagrange插值函数来近似,利用配点法得到离散方程,获得了方程的矩阵表达式。最后,数值算例表明,重心Lagrange插值配点法具有高精度和高效率的优点。Barycentric Lagrange interpolation collocation method for solving a class of nonlinear pseudo-parabolic equations is proposed.Firstly,barycentric Lagrange interpolation is introduced and the expression of differential matrix is given.Secondly,direct linearized iterative scheme,partial linearized iterative scheme,Newton linearized iterative scheme for solving nonlinear pseudo-parabolic equation are constructed.Thirdly,unknown functions and initial-boundary value conditions are approximated by barycentric Lagrange interpolation function,discrete equation is obtained by using collocation method,then the matrix equation is obtained.Finally,numerical examples show that the barycentric Lagrange interpolation collocation method has the advantages of high precision and high efficiency.

关 键 词:非线性伪抛物方程 重心Lagrange插值 配点法 迭代格式 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象