检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:臧强[1,2] 李宁 徐博文[1,2] 张国林 ZANG Qiang;LI Ning;XU Bo-wen;ZHANG Guo-lin(School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学自动化学院,南京210044 [2]江苏省大气环境与装备技术协同创新中心,南京210044
出 处:《科学技术与工程》2023年第8期3330-3337,共8页Science Technology and Engineering
基 金:国家自然科学基金(61973170,51575283);国家重点研发计划(2017YFD0701201-02)。
摘 要:针对传统萤火虫算法无法有效躲避未知障碍物、收敛速度慢、易陷入局部最优等问题,对其进行了改进,并将其与动态窗口法相结合,从而提出了一种移动机器人动态路径规划新算法。通过3种策略对萤火虫算法进行了改进。首先,采用Skew Tent混沌映射产生混沌序列对萤火虫种群进行初始化,提高萤火虫算法的全局收敛速度;其次,引入自适应步长平衡萤火虫算法全局和局部最优;最后采用差分进化算法通过变异、交叉和选择操作加强萤火虫算法的搜索能力。然后将改进萤火虫算法与动态窗口法相结合,使移动机器人在全局最优路径的基础上进行实时动态路径规划,在能保证全局最优路径的基础上有效躲避未知障碍物。基于MATLAB进行了仿真,仿真结果验证了所提算法的有效性。Aiming at the problems of traditional firefly algorithm,such as unable to effectively avoid unknown obstacles,slow convergence speed and easy to fall into local optimal,a new dynamic path planning algorithm for mobile robot was proposed by combining it with dynamic window approach.Three strategies were used to improve the firefly algorithm.First,Skew Tent chaos mapping was used to generate chaotic sequences to initialize the firefly population and improve the global convergence speed of the firefly algorithm.Secondly,the global and local optimizations of adaptive step size balance firefly algorithm were introduced.Finally,differential evolution algorithm was used to enhance the search ability of firefly algorithm through mutation,crossover and selection operation.Then the improved firefly algorithm was combined with the dynamic window approach,so that the mobile robot can perform real-time dynamic path planning on the basis of the global optimal path,and effectively avoid unknown obstacles on the basis of ensuring the global optimal path.The simulation was carried out based on MATLAB,and the simulation results verified the effectiveness of the proposed algorithm.
关 键 词:移动机器人 路径规划 萤火虫算法 动态窗口法 融合算法
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222