面向切入场景的变权重自适应巡航控制策略  被引量:3

Variable weight adaptive cruise control strategyfor cut-in scenes

在线阅读下载全文

作  者:李旭 谢宁 王建春 王强 LI Xu;XIE Ning;WANG Jianchun;WANG Qiang(College of Transportation,Shandong University of Science and Technology,Qingdao 266590,China)

机构地区:[1]山东科技大学交通学院,山东青岛266590

出  处:《重庆理工大学学报(自然科学)》2023年第4期10-18,共9页Journal of Chongqing University of Technology:Natural Science

基  金:国家自然科学基金项目(52002229)。

摘  要:为了解决自适应巡航控制系统因旁车道车辆切入识别较晚,造成驾驶员舒适性降低甚至出现危险的问题,提出了一种基于支持向量机(SVM)识别切入车辆并实时调整模型预测控制(MPC)权重参数的控制策略。提取真实交通车辆换道特征,采用支持向量机算法训练出前车切入识别模型。基于模糊控制理论设计权重调整机制,优化MPC控制器得到期望加速度。在Prescan、Matlab/Simulink及NI实时系统的环境下搭建硬件在环试验平台,对不同切入工况进行对比分析。结果表明:控制策略能够提前切换跟随目标,降低纵向加速度的波动,避免车辆强制动现象,提高系统的舒适性及安全性。In order to solve the problem of driver comfort reduction or even dangerous situations due to late recognition of the cut-in of side-lane vehicles of the adaptive cruise control system,this paper proposes a control strategy based on a support vector machine(SVM)to recognize cut-in vehicles and adjust the weight parameters of the model predictive control(MPC)in real time.Firstly,lane change characteristics of real traffic vehicles are extracted,and the SVM algorithm is used to train the recognition model of the cut-in front vehicle.Then,the weight adjustment mechanism is designed based on the fuzzy control theory,and the MPC controller is optimized to obtain the expected acceleration.Finally,a hardware-in-the-loop test platform is set up in Prescan,Matlab/Simulink and NI real-time system environments,and different cut-in working conditions are compared and analyzed.The results show that the adaptive cruise control strategy can switch the following target in advance,reduce the fluctuation of longitudinal acceleration and avoid forced vehicle braking,which improves the comfort and safety of the system.

关 键 词:自适应巡航控制 车辆切入识别 变权重系数 模型预测控制 硬件在环试验 

分 类 号:U461.4[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象