检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄磊 杨媛[1] 杨成煜 杨威 李耀华 HUANG Lei;YANG Yuan;YANG Chengyu;YANG Wei;LI Yaohua(College of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710018,China)
机构地区:[1]西安理工大学自动化与信息工程学院,西安710018
出 处:《计算机工程与应用》2023年第9期215-224,共10页Computer Engineering and Applications
基 金:国家自然科学基金面上项目(62174134);陕西省创新能力支撑计划项目(2021TD-25)。
摘 要:针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPDarknet主干网络来提取特征图像;在原网络CIoU损失函数的基础上引入Power变换,替换为α-CIoU,提高网络对小目标的检测能力;将K-means++聚类算法应用在FLIR红外数据集上重新生成Anchor,最后利用DIoU-NMS替换原网络的NMS后处理方法,改善对遮挡物体的检测能力,降低了模型的漏检率。通过在FLIR红外数据集上的消融实验验证了FS-YOLOv5轻量化算法满足红外场景下的道路目标检测任务,与原网络相比,在平均精度仅降低0.37个百分点的前提下,FS-YOLOv5模型的大小减少了26%,参数量减少了29%,检测速度提升了11 FPS,满足了在不同场景下移动端部署的需求。In order to solve the problems of traditional target recognition algorithm in complex scene,including low precision,poor real-time performance and difficulty in small target detection,an FS-YOLOv5s lightweight model based on infrared scene is proposed.A new FS-MobileNetV3 network is proposed to extract feature images instead of CSPDarknet backbone network,which is based on YOLOv5s,a one-stage target detection network.Based on the CIOU loss function of the original network,a Power transform is introduced,which is replaced byα-CIoU to improve the detection ability of the network to small targets.Then K-means++clustering algorithm is applied to the FLIR infrared data set to regenerate the Anchor.DIoU-NMS is used to replace the NMS post-processing method of the original network to improve the detection ability of occluded objects and reduce the missed detection rate of the model.The ablation experiments on the FLIR infrared dataset have verified that the FS-YOLOv5s lightweight algorithm can meet the task of road target detection in infrared scenes.Compared with the original network,the average accuracy of the FS-YOLOv5s model is only reduced by 0.37 percentage points.The size is reduced by 26%,the number of parameters is reduced by 29%,and the detection speed is increased by 11 FPS,which meets the needs of mobile deployment in different scenarios.
关 键 词:轻量化 红外目标检测 损失函数 NMS算法 YOLOv5
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222