检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:靳佳蕊 孙晓荣[1,2] 刘翠玲[1,2] 吴静珠[1,2] 郑冬钰 陈冰文 JIN Jiarui;SUN Xiaorong;LIU Cuiling;WU Jingzhu;ZHENG Dongyu;CHEN Bingwen(Beijing key Laboratory of Food Safety Big Data Technology,Artificial intelligence Academy,Beijing Technology and Business University,Beijing 100048,China;Beijing Technology and Business University,Beijing 100048,China)
机构地区:[1]北京工商大学人工智能学院,食品安全大数据技术北京市重点实验室,北京100048 [2]北京工商大学人工智能学院,北京100048
出 处:《食品工业科技》2023年第10期256-263,共8页Science and Technology of Food Industry
基 金:北京市自然科学基金项目:高光谱成像信息驱动的茶叶品质快速无损判别机制研究(4222043);2021年教育部高教司产学合作协同育人项目(202102341023);2022年北京工商大学研究生教育教学改革专项(19008022056)。
摘 要:茶多酚作为茶叶品质检测的重要指标之一,利用近红外光谱分析技术对茶多酚含量进行快速检测具有重要意义。本文以144个红茶样品作为研究对象,采取近红外光谱法结合偏最小二乘法(Partial Least Squares,PLS),分别建立粉末状茶叶样品和完整茶叶样品的茶多酚含量的近红外快速分析模型。结果表明,选用SNV+一阶导数+Savitzky-Golay平滑的预处理方法结合PLS建立的预测模型效果最佳,粉末状茶叶样品所建立模型训练集相关系数(Correlation Coefficient,r)为0.9990,训练集均方根误差(Root Mean Square Error of Calibration,RMSEC)为0.165%,预测集的r为0.9243,预测集均方根误差(Root Mean Square Error of Prediction,RMSEP)为0.972%;完整茶叶样品训练集r为0.9967,RMSEC为0.310%,预测集的r为0.9541,RMSEP为0.870%。结果表明,完整茶叶样品所建立的PLS定量分析模型要优于粉末状茶叶所建立的模型。因此,利用近红外光谱技术可实现对红茶中茶多酚含量的快速、无损检测。Tea polyphenol,a vital indicator used for the detection of tea quality,is of great significance to quickly detect the tea polyphenol content via near infrared spectroscopy.In this paper,the near infrared spectroscopy in combination with partial least squares(PLS)was adopted to establish the rapid analysis models by near infrared for tea polyphenol content of powdered and complete tea samples respectively,using 144 black tea samples as the study objects,revealing that the prediction model established by SNV+first derivative+Savitzky-Golay smoothing combined with PLS had the optimal effect in the results.The correlation coefficient(r)was 0.9990 and the root mean square error of calibration(RMSEC)was 0.165%of the training set,while the r was 0.9243 and the root mean square error of prediction(RMSEP)was 0.972%of the prediction set in powered tea samples.At the same time,the r was 0.9967 and the RMSEC was 0.310%of the training set,while the r was 0.9541 and the RMSEP was 0.870%of the prediction set in complete tea samples.The results showed that the PLS model for complete tea samples was better than that for powdered tea.Therefore,rapid and nondestructive detection of tea polyphenols in black tea can be achieved by near infrared spectroscopy.
关 键 词:红茶 茶多酚 近红外光谱 偏最小二乘法(PLS)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.106.206