基于改进粒子滤波的激光供能无人机跟瞄方法研究  被引量:1

Research on Laser-Powered UAV Tracking and Pointing Method Based on Improved Particle Filter

在线阅读下载全文

作  者:袁建华[1] 王林 韦乐 何宝林 谢斌斌 刘雅萍 Yuan Jianhua;Wang Lin;Wei Le;He Baolin;Xie Binbin;Liu Yaping(School of Electricity&New Energy,China Three Gorges University,Yichang 443000,Hubei,China)

机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443000

出  处:《应用激光》2023年第3期163-168,共6页Applied Laser

基  金:煤燃烧国家重点实验室开放基金项目(FSKLCCA1607);梯级水电站运行与控制湖北省重点实验室基金项目(2015KJX07);产学研协同培养研究生实践创新能力机制研究项目(SDYJ201604)。

摘  要:在激光供能无人机中,激光跟瞄无人机光伏电池板的方法成为关注热点之一。针对激光跟瞄无人机存在跟踪偏差大的问题,提出基于改进蝴蝶优化的粒子滤波算法。首先在蝴蝶优化算法初始化阶段引入对立学习策略,改善算法寻优性能;其次将蝴蝶优化算法位置更新公式进行优化,提升算法寻优速度;最后将引入蝴蝶优化算法的粒子滤波算法应用于激光供能无人机的跟瞄中,实现激光对无人机光伏电池板的最优跟踪。MATLAB结果表明,基于改进蝴蝶优化的粒子滤波算法在激光跟瞄过程中可以提高激光器发射激光的准确度,有效减小跟瞄误差,改善激光跟瞄无人机光伏电池板的效果。Among the laser powered unmanned aerial vehicles(UAVs),the method of laser tracking and aiming at the photovoltaic panels of the UAV has become one of the hotspots.In this paper,a particle filter algorithm based on improved butterfly optimization is proposed to solve the problem of large tracking deviation of laser tracking and aiming UAV.Firstly,an adversarial learning strategy is introduced in the initialization stage of the butterfly optimization algorithm,which improves the algorithm optimization performance.Secondly,the position update formula of the butterfly optimization algorithm is optimized to improve the algorithm optimization speed.Finally,the particle filter algorithm introduced by the butterfly optimization algorithm is applied to the tracking and aiming of the laser powered UAV to realize the optimal tracking of the UAV photovoltaic panel by the laser.MATLAB results show that the particle filter algorithm based on the improved butterfly optimization can improve the accuracy of the laser emitted by the laser during the laser tracking and aiming process,effectively reduce the tracking and aiming error,and improve the effect of laser tracking and aiming at the photovoltaic panel of the UAV.

关 键 词:无人机 激光供能 跟瞄方法 粒子滤波 蝴蝶优化算法 

分 类 号:TN249[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象