检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:缪玲娟[1] 张卫笑 周志强[1] 郝一达 MIAO Lingjuan;ZHANG Weixiao;ZHOU Zhiqiang;HAO Yida(School of Automation,Beijing Institute of Technology,Beijing 100081,China)
出 处:《中国惯性技术学报》2023年第5期501-509,共9页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(62173040)。
摘 要:针对微机械陀螺测量精度和可靠性低的问题,提出了基于神经网络和Kalman滤波的陀螺阵列融合算法。将神经网络与Kalman滤波相结合,利用LSTM-RNN计算每个陀螺的置信度;再将每个陀螺的置信度、测量值及Kalman滤波估计的角速度输入给BP神经网络进行数据融合,使得BP网络在训练时拥有更多关于陀螺的特征信息,从而提高角速度的融合精度。由于率先得到了每个陀螺的置信度,使得BP网络可以更容易辨识出故障陀螺,从而减小对故障陀螺测量数据的利用率。经实际系统验证,在陀螺存在故障的情况下,所提算法的陀螺阵列MAE和RMSE相比Kalman滤波分别降低了80.25%、81.39%,相比只有测量值输入的LSTM-RNN融合算法分别降低了60.33%、63.41%,具有较强的容错性和鲁棒性。Aiming at the low precision and reliability of micromechanical gyroscopes,a fusion algorithm of gyroscope array based on neural network and Kalman filter is proposed.By combining the neural network with Kalman filter,LSTM-RNN is used to calculate the confidence degree of each gyroscope.The confidence degree,measured value and angular velocity estimated by Kalman filter of each gyroscope are input to BP neural network for data fusion,so that BP network has more characteristic information about gyroscopes during training,so as to improve the angular velocity fusion accuracy.Since the confidence degree of each gyroscope is obtained first,BP network can identify the fault gyroscope more easily,thus reducing the utilization rate of the fault gyroscope measurement data.The actual system verification shows that in the case of gyroscope fault,the MAE and RMSE of gyroscope array of the proposed algorithm are reduced by 80.25%and 81.39%respectively compared with Kalman filter,and reduced by 60.33%and 63.41%respectively compared with LSTM-RNN fusion algorithm with only measurement input,which has strong fault tolerance and robustness.
关 键 词:神经网络 置信度 KALMAN滤波 陀螺阵列 数据融合
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.89.150