空腔结构对高速磁浮隧道压力波的影响研究  被引量:3

Influence of cavity structure on pressure waves in a high-speed maglev tunnel

在线阅读下载全文

作  者:张洁[1,2,3] 王雨舸 韩帅 龚晓波 熊小慧[1,2,3] 高广军 ZHANG Jie;WANG Yuge;HAN Shuai;GONG Xiaobo;XIONG Xiaohui;GAO Guangjun(Key Laboratory of Traffic Safety on Track of Ministry of Education,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,China;Joint International Research Laboratory of Key Technology for Rail Traffic Safety,Central South University,Changsha 410075,China;National&Local Joint Engineering Research Center of Safety Technology for Rail Vehicle,Changsha 410075,China;CRRC Qingdao Sifang Rolling Stock Research Institute Co.,Ltd.,Qingdao 266031,China)

机构地区:[1]中南大学交通运输工程学院轨道交通安全教育部重点实验室,湖南长沙410075 [2]中南大学轨道交通安全关键技术国际合作联合实验室,湖南长沙410075 [3]轨道交通列车安全保障技术国家地方联合工程研究中心,湖南长沙410075 [4]中车青岛四方车辆研究所有限公司,山东青岛266031

出  处:《铁道科学与工程学报》2023年第5期1555-1564,共10页Journal of Railway Science and Engineering

基  金:国家铁路集团有限公司科技研究开发计划课题(P2019J023);中南大学研究生自主探索创新项目(2021ZZTS0675);湖南省自然科学基金资助项目(2020JJ4737);中南大学高性能计算中心资助课题。

摘  要:随着我国更高速铁路交通系统建设的推进,车/隧耦合空气动力效应急剧增强,如何有效缓解车/隧耦合下的压力波幅值成为众多学者研究的难题之一。为缓解隧道压力波,常在隧道口设置缓冲结构,并根据隧道横截面积和列车运行速度确定相关参数。然而,因隧道外部现有地形和空间环境的限制,无法在洞口设计长距离、大范围的缓冲结构或者对现有缓冲结构进行改造扩建。针对此类问题,提出一种具有空腔结构的新型隧道结构。采用三维、非定常、可压缩N-S方程和标准k-ε湍流模型,结合滑移网格技术,研究时速600 km磁浮列车通过横截面积92 m2的单线隧道时的隧道壁面瞬变压力和微气压波,探明隧道内部空腔结构对初始压缩波传播特性的影响规律以及对隧道瞬变压力和微气压波的缓解效果。开展动模型试验、网格精度无关性和算法无关性验证数值计算方法的正确性。研究结果表明:空腔结构使得进入隧道内部的气流流经透孔并在空腔内产生反射,通过耗散压缩波强度来抑制压缩波压力梯度的上升,从而对隧道壁面压力和隧道出口微气压波具有明显的减缓作用。相比于现有隧道,具有空腔结构的新型隧道对隧道入口140 m处的壁面压力幅值减缓作用达13.1%,对隧道出口20 m处的微气压波幅值减缓效果达8.5%。With the development of China’s high-speed railway transportation system,the vehicle-tunnel coupling aerodynamic effect has been greatly enhanced.How to effectively alleviate the pressure wave amplitude under vehicle-tunnel coupling has become one of the focuses.In order to relieve the pressure wave,the hood was usually set at the tunnel mouth,and the relevant parameters were determined according to the cross-sectional area of the tunnel and the speed of the train.However,due to the limitations of the existing terrain and space environment outside the tunnel,it was impossible to design a long-distance and large-scale hood at the tunnel entrance or to reconstruct and expand the existing hood.A new tunnel structure with cavity structure was proposed in this paper.Using three-dimensional,unsteady,compressible N-S equations and standard k-εturbulence model,combined with slip mesh technology,the transient pressure on the tunnel wall and micropressure wave were studied when a maglev train passes through a 92 m2 single-track tunnel at a speed of 600 km/h.The effect of tunnel cavity structure on the propagation characteristics of the initial compression wave and the relief effect of tunnel transient pressure and micro-pressure wave were investigated.The moving model test,gridindependence and algorithm independence were carried out to validate the numerical method.The results show that the cavity structure makes the airflow flowing through the holes and produces multiple reflections,suppressing the rise of the compression wave gradient by dissipating the compression wave intensity,and has obvious effects on the tunnel wall pressure and the micro-pressure wave at the tunnel exit.Compared with the existing tunnel,the new tunnel with cavity structure can reduce the amplitudes of the wall pressure at 140 m from the tunnel entrance and the micro-pressure wave at 20 m from the tunnel exit by 13.1%and 8.5%,respectively.

关 键 词:隧道空腔结构 初始压缩波 微气压波 数值模拟 磁浮列车 

分 类 号:U25[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象