检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:满其峰[1] 胡金艳 张义兵[1] 李艺 MAN Qifeng;HU Jinyan;ZHANG Yibing;LI Yi(School of Education Science,Nanjing Normal University,Nanjing Jiangsu 210097;Faculty of Education,Henan Normal University,Xinxiang Henan 453007)
机构地区:[1]南京师范大学教育科学学院,江苏南京210097 [2]河南师范大学教育学部,河南新乡453007
出 处:《电化教育研究》2023年第6期22-28,共7页E-education Research
基 金:2020年江苏教育改革发展战略性与政策性研究课题“江苏终身学习体系建设的现实问题与对策研究”(课题编号:211060A52007)。
摘 要:任何学习理论都需要清晰的知识建构机制作为底层逻辑,当前较新的成就是基于皮亚杰“两个范畴”说给出的解释,但“两个范畴”的运行过程仍需继续澄清。实际上,皮亚杰晚年提出的“态射—范畴”论解决了这一问题,但因学界未能将“态射—范畴”论与“两个范畴”说之间建立联系,因此该理论仅被视为一个心理学思考而未能对教育产生更多的指导。针对此问题,文章首先对“态射—范畴”论的基本思想进行把握,疏通“态射—范畴”论与“两个范畴”说的关系并借此使其与学习者发展相联结,构建起完整的知识建构机制理论体系,继而将其映射到教育领域,给出了关于知识观、学习观和教学观的新建议。Any learning theory needs a clear mechanism of knowledge construction as the underlying logic,and the recent achievements are based on the explanation given by Piaget's"two categories"theory,but the operation process of the"two categories"still needs to be clarified.In fact,Piaget solved this problem by putting forward the theory of"morphism-category"in his later years,but since the academic circle failed to establish the connection between"morphism-category"theory and the"two categories"theory,this theory has been only regarded as a psychological reflection and failed to provide more guidance for education.To solve this problem,this paper firstly discusses the basic idea of"morphism-category"theory,unravels the relationship between"morphism-category"theory and"two categories"theory,and thus makes it connect with learner development,and builds a complete theoretical system of knowledge construction mechanism.Then it is mapped to the field of education,and some new suggestions are given for the view of knowledge,learning and teaching.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7