检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李梦男 李琨[1] 吴聪 LI MengNan;LI Kun;WU Cong(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650504
出 处:《机械强度》2023年第3期569-575,共7页Journal of Mechanical Strength
摘 要:针对目前现有轴承故障诊断方法对不平衡数据集中的少数类诊断准确率低的问题,提出了不平衡数据集下基于重要性加权自编码器(Importance Weighted Auto-encoder,IWAE)的轴承故障诊断方法。首先通过少数类的样本数据来训练IWAE网络,将生成的样本数据加入到原始数据集中,得到平衡后的数据集;然后引入深度学习方法作为诊断网络,将平衡后的数据集直接输入诊断网络中,自适应的学习故障特征,实现故障分类。为了增强诊断网络的准确率,使用一维多尺度卷积神经网络进行故障诊断。大量的定性定量实验表明,所提出的方法在不平衡比为1/7时,少数类诊断的准确率已经能够达到98.90%,均优于其他现有模型,并且拥有较好的收敛性和泛化性。Aiming at the low accuracy with unbalanced data sets in existing bearing fault diagnosis methods,we proposed a bearing fault diagnosis method based on importance weighted auto⁃encoder(IWAE)in unbalanced data sets.It was trained by minority samples,and the generated samples were added into original data sets to obtain balanced data sets.Then,deep learning method was used as diagnose network,and the balanced data sets were fed into it as input,so as to adaptively learn fault characteristics and realize fault classification.A large number of qualitative experiments showed that when the imbalance rate was 1∶7,the method could correctly classify the balanced samples,and the accuracy rate was 98.90%.Based on various imbalance ratios,the proposed method had better convergence and generalization than other existing models.
关 键 词:不平衡数据集 重要性加权自编码 一维多尺度卷积神经网络 轴承故障诊断
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TH133.3[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28