检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈令坤[1] 隋顺雨 孙佰清[3] 王璐 翟晨程 陆志超 陈雯昕 胡晓伦[4] 黄晓明[4] CHEN Lingkun;SUI Shunyu;SUN Baiqing;WANG Lu;ZHAI Chencheng;LU Zhichao;CHEN Wenxin;HU Xiaolun;HUANG Xiaoming(College of Civil Science and Engineering,Yangzhou University,Yangzhou 225127,Jiangsu,China;College of Political Science and Law,Capital Normal University,Beijing 100048,China;School of Management,Harbin Institute of Technology,Harbin 150001,Heilongjiang,China;School of Transportation,Southeast University,Nanjing 211189,Jiangsu,China)
机构地区:[1]扬州大学建筑科学与工程学院,江苏扬州225127 [2]首都师范大学政法学院,北京100048 [3]哈尔滨工业大学经济与管理学院,黑龙江哈尔滨150001 [4]东南大学交通学院,江苏南京2111189
出 处:《水利水电技术(中英文)》2023年第S01期297-302,共6页Water Resources and Hydropower Engineering
基 金:2021年度黑龙江省教育科学规划重点课题“新工科、新商科建设背景下本科生协同创新能力培养机制研究”(GJB1421045);国家电网公司科技项目“双碳目标下基于电力大数据和区块链技术的全省经济运行分析与政策效果评估”(522401220003);国家重点研发计划“交通基础设施”重点专项(2021YFB2600600)。
摘 要:为实现在灾害环境下对跨海大桥灾区的应急物资调度分配及缩短应急救援时间,假设应急救援的范围为50 km×50 km的二维平面内,将任务组的个数和粒子的维度设定相等,假设应急救援无人机的数量是应急救援任务数量的3倍,设定应急救援任务数量和应急救援无人机的数量,通过设置不同的救援信息(如受灾点位置、供应点无人机位置等),将粒子群算法(算法一)分别加入分组策略和自适应惯性权重策略来改进算法,分别形成新的算法二、三,将每组试验进行3次测试,取平均值,并推出最快运行时间。结果表明,算法二(粒子群算法加入分组策略)使得距离较短的任务归为同一任务组中,因此,粒子的纬度会变小,从而算法运行所用时间最短。随着救援任务与无人机数量的增加,分组策略的效果更好,能在不同程度上提高任务分配效率与缩短救援时间。In order to realize the dispatching and distribution of emergency supplies to the disaster area of the cross-sea bridge and shorten the emergency rescue time under the disaster environment,this paper assumes that the scope of emergency rescue is within a two-dimensional plane of 50 km×50 km,sets the number of task groups and the dimension of particles equal,assumes that the number of emergency rescue drones is three times the number of emergency rescue tasks,sets the number of emergency rescue tasks and the number of emergency rescue drones,and improves the algorithm by Setting different rescue information(such as the location of the affected point,the location of the supply point drone,etc.),the particle swarm algorithm(Algorithm I)is improved by adding grouping strategy and adaptive inertia weighting strategy to the algorithm to form new Algorithms II and III respectively,and each group of experiments is tested three times to take the average value and introduce the fastest running time.The result show that Algorithm II(particle swarm algorithm adding grouping strategy)groups the tasks with shorter distances in the same task group.Therefore,the latitude of particles will become smaller,and thus the algorithm takes the shortest time to run.As the number of rescue tasks and Unmanned Aerial Vehicles(UAVs)increases,the grouping strategy is more effective and can improve the efficiency of task assignment and shorten the rescue time to different degrees.
关 键 词:粒子群算法 跨海大桥 无人机 应急救援 路径优化
分 类 号:V19[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70