检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周伦钢 赵松波 仝戈 许亮[3] ZHOU Lungang;ZHAO Songbo;TONG Ge;XU Liang(Henan Industrial School,Zhengzhou 450002,China;South-to-North Water Diversion Middle Route Information Technology Co.,Ltd.,Beijing 100053,China;Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems,School of Electrical Engineering and Automation,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]河南省工业学校,河南郑州450002 [2]南水北调中线信息科技有限公司,北京100053 [3]天津理工大学电气工程与自动化学院天津市复杂系统控制理论与应用重点实验室,天津300384
出 处:《人民黄河》2023年第7期130-133,162,共5页Yellow River
基 金:国家自然科学基金资助项目(61308120)。
摘 要:为提高BP神经网络对水工钢闸门安全等级识别的速度和精度,构建基于信息增益(IG)和混沌粒子群优化(CPSO)算法优化BP神经网络的水工钢闸门安全等级评估模型。该模型利用IG算法精简水工钢闸门安全等级评估的特征指标,避免冗余变量干扰,提升模型的训练速度;利用CPSO算法优化BP神经网络的初始权重,提高模型的收敛性及对水工钢闸门安全等级的分类能力。经过验证分析,基于IG-CPSO-BP的水工钢闸门安全等级评估模型的评估结果与实际的水工钢闸门安全等级基本吻合,识别精度明显优于IG-BP、IG-GA-BP、IG-PSO-BP模型。In order to improve the speed and accuracy of BP neural network in the identification of safety grade of hydraulic steel gates,a safety grade evaluation model of hydraulic steel gates based on information gain(IG)and chaotic particle swarm optimization(CPSO)opti⁃mized BP neural network was constructed.In this model,IG algorithm was used to simplify the characteristic index of safety grade evaluation of hydraulic steel gates,eliminate the interference of redundant feature vectors,and improve the training speed of the model.The model used CPSO algorithm to optimize the initial weight system of BP neural network to improve the convergence of the model and the classification abil⁃ity of the safety grade of hydraulic steel gates.After verification and analysis,the evaluation results of the safety grade evaluation model of hy⁃draulic steel gates based on IG⁃CPSO⁃BP are basically consistent with the actual safety grade of hydraulic steel gates,and the identification accuracy is significantly better than that of IG⁃BP,IG⁃GA⁃BP and IG⁃PSO⁃BP models.
关 键 词:信息增益 混沌粒子群优化算法 BP神经网络 安全等级识别 水工钢闸门
分 类 号:TV663[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.232.138