检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘佳浩 高军伟[1,2] 张炳星 王建冲 LIU Jia-hao;GAO Jun-wei;ZHANG Bing-xing;WANG Jian-chong(College of Automation,Qingdao University,Qingdao,Shandong 266071,China;Shandong Provincial Key Laboratory of Industrial Control Technology,Qingdao,Shandong 266071,China)
机构地区:[1]青岛大学自动化学院,山东青岛266071 [2]山东省工业控制技术重点实验室,山东青岛266071
出 处:《食品与机械》2023年第6期112-118,共7页Food and Machinery
基 金:山东省自然科学基金资助项目(编号:ZR2019MF063);山东省重点研发计划项目(编号:2017GGX10115)。
摘 要:目的:解决目前水果分级检测方法效率低、误检率高等问题。方法:以苹果为分拣对象,设计一个基于机器视觉的水果分级系统。对实时采集得到的苹果图像进行预处理,使用改进的Canny边缘检测算法进行边缘提取,通过最小外接圆法拟合边缘坐标得到苹果的横切面半径。将采集到的RGB图像转换为HSI图像,根据H分量范围计算红色区域比例,判断苹果的色泽度。统计区域像素点个数,分别求取苹果的面积和周长,计算出苹果的圆形度。结合苹果果径长度、色泽度和圆形度3个特征值对苹果进行综合分级。结果:50个苹果样本试验结果表明,水果分级系统和人工分拣测量的果径误差范围在±1.5 mm以内,样本颜色特征与苹果实际外观相符,圆度值的大小与实际形状优劣相符。结论:该系统满足实际生产中对于苹果分级的需求,有助于实现苹果品级的准确识别。Objective:In order to solve the problems of low efficiency and high false detection rate of current fruit classification detection methods,a fruit classification system based on machine vision was designed with apples as the sorting object.Methods:The apple image collected in real time was preprocessed,the improved Canny edge detection algorithm was used to extract the edge,and the radius of the apple cross-section was obtained by fitting the edge coordinates with the minimum peripheral circle method.The acquired RGB image was converted to HSI image,and the proportion of red region is calculated according to the range of H component to determine the color of apple.Count the number of pixels in the area,and calculate the area and circumference of the apple respectively to calculate the roundness of the apple.Combined with three characteristic values of diameter length,color and roundness,apple was graded comprehensively.Results:Through the test of 50 apple samples,the error range of fruit diameter measured by the fruit grading system and manual sorting was within ±1.5 mm,the color characteristics of the samples were consistent with the actual appearance of the apple,and the result size of the roundness value was consistent with the actual shape.Conclusion:The system can meet the demand of apple classification in actual production and help to realize the accurate identification of apple grade.
关 键 词:机器视觉 水果分级 边缘检测 最小外接圆法 HSI颜色模型
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S661.1[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.80.220