空间离散传染病扩散模型研究  

Analysis of spatial discretized diffusive endemic model

在线阅读下载全文

作  者:李怀兴 李遵先 苟长义[1] LI Huaixing;LI Zunxian;GOU Changyi(School of Mathematics,Tianjin University of Technology,Tianjin 300384,China)

机构地区:[1]天津理工大学理学院,天津300384

出  处:《天津理工大学学报》2023年第3期49-54,共6页Journal of Tianjin University of Technology

基  金:天津市教委科研计划项目(2018KJ147)。

摘  要:采用二阶中心差商方法得到传染病扩散模型的空间离散形式,并应用电路系统中的解耦合方法,得到该模型在两个空间齐次平衡态处线性化系统的特征方程,研究了两个平衡态的局部稳定性问题。结果表明:两个平衡态均不会出现Hopf分支;通过构造Lyapunov函数和应用Lasalle不变性原理,研究了两个平衡态的全局稳定性问题,并通过MATLAB数值模拟,给出理论分析的直观解释。This article considers a spatial discretized diffusive epidemic model,which is derived by using the secend order centered difference approximations and appling the decoupling method in circuit systems.The characteristic equations of the linearized system at the two spatial homogeneous steady states are derived respectively.Then the local stability of the two steady states and the nonexistence of Hopf bifurcation are researched.The global stability of the two steady states are studied by constructing Lyapunov functions and applying Lasalle invariance principle.Simulations are given to demonstrate the theoretical results by means of the package of MATLAB.

关 键 词:传染病模型 空间离散 全局稳定性 LYAPUNOV函数 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象