基于多目标快速探索随机树的移动机器人巡检路径优化方法  被引量:2

Multi-objective Rapidly-Exploring Random Tree Robot Patrol Path Optimization Method

在线阅读下载全文

作  者:张可 宋呈群[1,2] 程俊 张锲石[1,2] 曾驳 ZHANG Ke;SONG Chengqun;CHENG Jun;ZHANG Qieshi;ZENG Bo(CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;The Chinese University of Hong Kong,Hong Kong 999077,China)

机构地区:[1]中国科学院深圳先进技术研究院、中国科学院人机智能协同系统重点实验室,深圳518055 [2]香港中文大学,中国香港999077

出  处:《集成技术》2023年第4期32-41,共10页Journal of Integration Technology

基  金:国家自然科学基金项目(U21A20487);深圳市科技计划项目(JCYJ20180507182610734,KCXFZ20201221173411032);中国科学院关键技术人才项目。

摘  要:针对移动机器人需要访问多目标的巡检路径规划问题,该文提出一种多目标快速探索随机树路径优化方法。首先,根据提供的环境地图与巡检目标点,该文采用一种RRT-Connect-ACO算法得到目标点的巡检顺序和可行路径;然后,通过引入信息子集,对路径进行优化,得到最终的最优路径。实验结果表明,与现有的多目标路径规划算法相比,该方法考虑了地形的影响,得到的最优路径更符合实际情况。A multi-objective rapidly-exploring random tree path optimization method is proposed for the multiobjective patrol path planning of mobile robots.According to the provided environment map and patrol target points,a new method RRT-Connect-ACO is used to obtain the patrol sequence and feasible path of the target points.Then the optimal path is obtained by introducing informed subset to optimize the path.The experiment results show that the method considers the influence of terrain and obtains an optimal path that is more consistent with the actual situation,which is different from the existing multi-objective path planning algorithms.

关 键 词:多目标路径规划 快速探索随机树 旅行商 蚁群算法 信息子集 移动机器人 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象