基于神经网络的机电作动器滑模输出反馈控制  被引量:5

Sliding Mode Output Feedback Control of Electromechanical Actuator Based on Neural Network

在线阅读下载全文

作  者:曹萌萌 胡健[1,2] 周海波[2] 姚建勇[1] 赵杰彦[1] 王俊龙 CAO Mengmeng;HU Jian;ZHOU Haibo;YAO Jianyong;ZHAO Jieyan;WANG Junlong(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094;State Key Laboratory of High Performance and Complex Manufacturing,Central South University,Changsha 410083)

机构地区:[1]南京理工大学机械工程学院,南京210094 [2]中南大学高性能复杂制造国家重点实验室,长沙410083

出  处:《机械工程学报》2023年第10期357-365,共9页Journal of Mechanical Engineering

基  金:国家自然科学基金(51975294);高性能复杂制造国家重点实验室开放课题基金(Kfkt2019–11);中央高校基本科研业务费专项资金(30920010009)资助项目。

摘  要:机电作动系统广泛应用于工业生产和军事领域,但机电作动系统存在的模型不确定性会使得基于模型的非线性控制器精度下降,同时由于安装空间、成本的限制,系统往往无法安装速度传感器。针对上述问题,提出一种基于神经网络的滑模输出反馈控制策略。针对系统中存在的常值扰动以及参数不确定性,用扩张状态观测器(Extended state observer,ESO)加以估计;针对系统中存在的时变扰动,利用径向基函数神经网络的万能逼近特性进行估计,然后通过前馈补偿技术对前者进行补偿;同时利用ESO观测的系统速度值设计控制量,从而实现输出反馈控制。利用Lyapunov稳定性定理证明了所设计的控制器可以实现系统的有界稳定。大量的仿真和试验结果证明了所设计的控制器相对于传统的PID以及非线性控制器控制精度可以提高一个数量级。Electromechanical actuators are widely used in industrial production and military fields.However,the model uncertainty of electromechanical actuators will reduce the accuracy of model-based nonlinear controllers.At the same time,due to the limitation of installation space and cost,it is often impossible to install speed sensors in system.To solve these problems,a sliding mode output feedback control strategy based on neural network is proposed.The constant disturbance and parameter uncertainty in the system are estimated by extended state observer(ESO).The universal approximation property of radical basis function neural network is used to estimate the time-varying disturbances in the system,and then the feedforward compensation technology is used to compensate the former.At the same time,the speed of the system observed by the ESO is used to design the control quantity,so as to realize the output feedback control.By using Lyapunov stability theorem,it is proved that the designed controller can achieve bounded stability of the system.A large number of simulation and experimental results prove that the controller designed can improve the control accuracy by an order of magnitude compared with the traditional PID and nonlinear controller.

关 键 词:机电作动器 输出反馈控制 神经网络 滑模控制 模型不确定性 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象