检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟凡君 杨学岭 吴鑫 管志强 MENG Fanjun;YANG Xueling;WU Xin;GUAN Zhiqiang(No.8 Research Academy of CSSC,Nanjing 211153,China;Nanjing University of Aeronautics and Astronautics,Nanjing 211153,China)
机构地区:[1]中国船舶集团有限公司第八研究院,江苏南京211153 [2]南京航空航天大学,江苏南京211153
出 处:《舰船电子对抗》2023年第4期60-65,共6页Shipboard Electronic Countermeasure
摘 要:特征提取是基于微动特征雷达目标识别的关键一环。传统方法提取的特征为线性、浅层的,导致表征微多普勒效应的能力有限。针对这些问题,采用非线性网络进行特征学习,建立了基于微多普勒效应的飞机目标识别深度网络。通过构建处理微多普勒效应的卷积神经网络(CNN)模型,从微多普勒频域数据中自动提取非线性深层次属性特征,实现空中目标分类识别。在实际测量的微多普勒频域数据上的大量实验结果表明,所提方法具有良好的目标识别性能和泛化性能。Feature extraction is the key technique for radar target recognition based on micro-Doppler effect.The features extracted by traditional methods are linear and shallow,which results in the limited capability to characterize micro-Doppler effect.Aiming at these issues,this paper a-dopts nonlinear network for feature learning,builds up deep network for aircraft target recognition based on micro-Doppler effect.By constructing a convolutional neural network(CNN)model for dealing with micro-Doppler effect,the nonlinear deep property features of targets are fully extrac-ted from micro-Doppler data of frequency domain,so air target classification and recognition are re-alized.The extensive experimental results on the real measured micro-Doppler frequency domain data show that the proposed method achieves good target recognition performance and generaliza-tion performance.
关 键 词:微多普勒效应 特征提取 雷达自动目标识别 卷积神经网络
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.26.71