数字转型下的农村老年群体信息素养现状研究——基于Nvivo11与Rostcm6的访谈分析  

Research on Information Literacy in Rural Elderly Groups from Perspective of Digital Transformation——An Nvivo11-and-Rostcm6-Based Interview Analysis

在线阅读下载全文

作  者:肖康 李晓岩[1] 张家年[1] XIAO Kang;LI Xiao-yan;ZHANG Jia-nian(School of Education,Huaibei Normal University,Huaibei,Anhui,235000)

机构地区:[1]淮北师范大学教育学院,安徽淮北235000

出  处:《广州广播电视大学学报》2023年第4期18-24,30,107,共9页Journal of Guangzhou Open University

基  金:2020年度安徽省哲学社会科学规划项目“安徽农村地区老年群体信息素养理论与实践研究”(项目编号:AHSKY2020D127)。

摘  要:数字转型背景下,社会对互联网用户的信息素养提出了更高的要求,农村老年人作为数字转型社会中的弱势群体深陷于数字鸿沟之中。本研究对A省管辖下8个市的160位农村老年人进行了深度访谈,借助Nvivo11软件对拥有智能手机的老年人访谈文本进行了三级编码,通过Rostcm6软件对没有智能手机的老年人访谈数据进行词频分析,并用Rostcm6软件对所有老年人访谈文本进行语义网络分析与情感分析。数据分析结果表明:大部分农村老年人都对信息设备持肯定态度,但农村地区老年群体的信息素养整体偏低;健康、文化与经济是影响农村地区老年人信息素养的关键变量,且面对面培训已经成为农村老年群体的迫切需求。Chinese society is undergoing great digital transformation,and higher information literacy is required of internet users,thus the elderly,those in the rural areas in particular,tend to be disadvantaged and trapped in the digital gap.We conducted in-depth interviews with 160 rural elderly from 8 cities in Province A.Nvivo11 software was used to analyze the interview texts of those who have smart phones,and coded hierarchically in three levels.For those who have no smart phones,Rostcm6 software was adopted to examine the text's word frequency.Then Rostcm6 software was employed to conduct semantic network analysis and emotional analysis of all the texts.Results indicate that most of the elderly in rural areas have a positive attitude towards information equipment,but their information literacy is not high as a whole.Health,culture and economy are the key variables that affect their information literacy,and face-to-face training has become an urgent demand in the elderly in those areas.

关 键 词:老年群体 信息素养 农村 数字转型 扎根理论 

分 类 号:D669.6[政治法律—政治学] G206[政治法律—中外政治制度]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象