机构地区:[1]State Key Laboratory for Mesoscopic Physics,Frontiers Science Centre for Nano-optoelectronics,School of Physics,Peking University,Beijing 100871,China [2]Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China [3]Songshan Lake Materials Laboratory,Dongguan 523808,China [4]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [5]International Centre for Quantum Materials,Collaborative Innovation Centre of Quantum Matter,Peking University,Beijing 100871,China [6]Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials,Peking University,Beijing 100871,China [7]Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China [8]School of Physics,Liaoning University,Shenyang 110036,China
出 处:《Science Bulletin》2023年第15期1611-1615,M0003,共6页科学通报(英文版)
基 金:supported by the Key R&D Program of Guangdong Province(2020B010189001 and 2019B010931001);the National Natural Science Foundation of China(52025023,92163206,51991342,52021006,52172035,and 52202161);the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000);the National Key R&D Program of China(2021YFA1400502,2021YFB3200303,and 2021YFA1400201);Guangdong Major Project of Basic and Applied Basic Research(2021B0301030002);the Fundamental Research Funds for the Central Universities(06500235);support from the National Program for Support of Top-notch Young Professionals。
摘 要:在单晶衬底上外延电镀金属为获得高度有序的金属薄膜提供了一种经济高效的方法.在传统外延电镀过程中,随镀层厚度增加,缺陷数量变多,出现孪晶,并进一步导致镀层结构向多晶转变,使得传统单晶衬底上的外延电镀只能获得几微米厚的单晶薄膜.因此,需要开发一种新的策略来调节电镀过程,实现更厚金属单晶的制备.本文以高指数单晶铜箔(25μm)为阴极,利用外延电镀法成功制备出毫米厚的单晶铜板.研究发现,高指数单晶铜表面独特的原子台阶,能够引导铜原子的有序沉积,减少缺陷、层错或晶格孪晶的形成,进而有助于更厚单晶铜的外延电镀.与相同厚度的多晶铜相比,所制备的单晶铜在电导率、延展性和疲劳性能方面有显着提升.该工作为单晶铜板的规模化生产提供了新的策略,有望推动单晶铜在高速、大功率、柔性电路等领域的高端应用.Massive production of single-crystal metals has been a long pursuit in materials science and engineering due to their superior electrical,thermal and mechanical performances compared with polycrystalline ones.Single-crystal metal ingots could be traditionally fabricated by the Czochralski technique,and large-size singlecrystal metal foils(with thickness limited to several tens of micrometers)have been recently prepared by the designed thermal annealing of polycrystalline ones[1–4].However,for the thicker single-crystal metal foils or plates,the economic and efficient preparation has not yet been achieved.In principle,epitaxial electrodeposition of metal on single-crystal substrates provides an economic and efficient way to achieve highly ordered metal films[5–9].However,as the electrodeposition goes on,the number of defects increases and lattice twinning occurs more easily,which leads to the structure transition to polycrystals[5,6].Consequently,epitaxial electrodeposition on single-crystal substrate was reported to only reach several-micrometer-thick single-crystal films,even the epilayer and the substrate are of the same lattice structure[7–9].Hence,a new strategy needs to be developed to regulate the electrodeposition process for the preparation of thick single crystals.
关 键 词:电镀过程 多晶转变 镀层厚度 镀层结构 电镀法 金属薄膜 单晶铜 铜原子
分 类 号:TQ153.14[化学工程—电化学工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...