检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张冰战[1,2] 朱昊 康谷峰[1] 李开放 朱茂飞 Zhang Bingzhan;Zhu Hao;Kang Gufeng;Li Kaifang;Zhu Maofei(Hefei University of Technology,Hefei 230009;National and Local Joint Engineering Research Center for Automotive Technology and Equipment,Hefei 230009;Hefei University,Hefei 230601)
机构地区:[1]合肥工业大学,合肥230009 [2]汽车技术与装备国家地方联合工程研究中心,合肥230009 [3]合肥学院,合肥230601
出 处:《汽车技术》2023年第9期1-8,共8页Automobile Technology
基 金:安徽省发改委新能源与智能网联汽车创新工程项目(HC622021001)。
摘 要:为提升插电式混合动力汽车(PHEV)的燃油经济性,提出了一种基于实时交通信息的车速预测方法,并以燃油经济性最优为目标,借助动态规划(DP)算法在预测时域内进行实时最优转矩分配,建立基于模型预测控制(MPC)的整车能量管理策略。MATLAB/Simulink仿真平台验证结果表明:与传统车速预测方法相比,基于实时交通信息的车速预测方法的车速预测精确度提高了13.5%;与基于历史车速的模型预测控制策略相比,基于实时交通信息的模型预测控制策略使整车燃油经济性提高了9.5%。In order to improve the fuel economy of Plug-in Hybrid Electric Vehicle(PHEV),this paper proposed the vehicle speed prediction method based on real-time traffic information.The energy management strategy was established to obtain the optimal fuel economy based on Model Prediction Control(MPC),the real-time optimal torque distribution was optimized with the help of dynamic programming algorithm.Simulation verification was conducted on MATLAB/Simulink platforms which showed that the accuracy was improved by 13.5%compared with traditional vehicle speed prediction methods in real-time road conditions.Compared with the MPC strategy based on historical vehicle speed,the fuel economy of MPC strategy based on real-time traffic information is improved by 9.5%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49