一种基于结构特征的单目视觉惯性里程计  

A monocular visual inertial odometry based on structural features

在线阅读下载全文

作  者:闫莉萍[1] 李程伟 徐柏凯 夏元清[1] 肖波[2] YAN Liping;LI Chengwei;XU Bokai;XIA Yuanqing;XIAO Bo(School of Automation,Beijing Institute of Technology,Beijing 100081,China;School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China)

机构地区:[1]北京理工大学自动化学院,北京100081 [2]北京邮电大学人工智能学院,北京100876

出  处:《系统工程与电子技术》2023年第10期3207-3217,共11页Systems Engineering and Electronics

基  金:国家自然科学基金(62073036,62076031);北京市自然科学基金(4202071)资助课题。

摘  要:针对传统的仅依赖点特征的视觉里程计鲁棒性较差的问题,提出了一种结合点特征、线特征以及结构特征的视觉惯性里程计。结构特征是一个满足曼哈顿世界假设的正交基,可用于描述结构物体包含的平行与正交信息。结构特征的引入为视觉惯性里程计提供了一个全局的约束,可有效减少旋转误差的累计。与此同时,为了保证引入结构特征后系统的实时性,基于线特征匹配关系以及重力方向,提出了一种鲁棒且高效的结构特征提取算法。实验结果表明,相比现有的开源系统,所提出的系统在保证实时性的同时,有效减少了旋转累计误差。In response to the problem of poor robustness of traditional visual odometers that only rely on point features,a monocular visual inertial odometry that utilize point features,line features and structural features are deduced.The structural feature is an orthonormal basis that satisfy the Manhattan world hypothesis.This feature contains the parallel and orthogonal information of the structural object.The introduction of structural feature provide an overall constrain for visual inertial odometry and can reduce the accumulative error of rotation effectively.Meanwhile,to ensure the real-time performance of the system after the introduction of structural features,a robust and efficient algorithm is proposed to extract structural feature,which is based on the matching relationship of line features and the direction of gravity vector.The experimental results demonstrate that,compared with the existing open source systems,the proposed system can effectively reduce the accumulated rotation error while maintaining the real-time performance.

关 键 词:同时定位与建图 点特征 线特征 结构特征 惯性测量单元 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象