检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李俊文 张红英[1,2] 韩宾[1,2] LI Junwen;ZHANG Hongying;HAN Bin(School of Information Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;Robot Technology Used for Special Environment Key Laboratory of Sichuan Province,Mianyang,Sichuan 621010 China)
机构地区:[1]西南科技大学信息工程学院,四川绵阳621010 [2]西南科技大学特殊环境机器人技术四川省重点实验室,四川绵阳621010
出 处:《计算机工程与应用》2023年第19期122-129,共8页Computer Engineering and Applications
基 金:四川省科技厅重大专项(2017GZDZX0003);国家部委预研项目。
摘 要:目前显著性目标检测的研究大都是追求性能,而忽略了效率,导致实用性较差。为此,提出一个高效且轻量的网络模型,利用特征复用的思想构建了一种特征提取子网络(LFRM)来充分提取与聚合轻量级特征提取网络的深层特征信息,并生成初始粗糙显著预测图,来用于后续低层特征的定位目标指导;针对各阶段特征层之间的差异,构建了一种跨层交互聚合模块(CIAM)来有效进行空间信息与语义信息的聚合,并减少冗余信息;构建了一种边缘细化模块(ERM)来充分获取和利用边缘轮廓信息,同时采用一种渐进式自引导损失来增强边缘信息彼此的依赖性。最终的网络只有3.48×10~6的参数,且对于352×352的图片,在单张GTX 1080Ti显卡上能够达到108 FPS的运行速度。对五个基准公开数据集的测试结果表明,所提出的模型拥有跟目前最先进的SOD方法相当甚至更好的性能,同时具有更小的参数以及更快的速度。Most of the research on saliency target detection is to pursue performance,while ignoring efficiency,resulting in poor practicability.To this end,this paper proposes an efficient and lightweight network model.Firstly,a feature extrac-tion sub-network(LFRM)is constructed using the idea of feature reuse to fully extract and aggregate the deep feature information of the lightweight feature extraction network,and generate the initial rough saliency prediction map that is used for positioning target guidance of subsequent low-level features.Secondly,according to the differences between feature layers at each stage,a cross-layer interactive aggregation module(CIAM)is constructed to effectively aggregate spatial information and semantic information and reduce redundant information.Finally,an edge refinement module(ERM)is constructed to fully obtain and utilize edge contour information,while adopting a progressive self-guided loss to enhance the dependence of edge information on each other.The final network has only 3.48×106 of parameters,and for a 352×352 image,it can reach a running speed of 108 FPS on a single GTX1080Ti graphics card.The test results on five benchmark public datasets show that the model proposed in this paper has comparable or even better performance than the current state-of-the-art SOD methods,with smaller parameters and faster speed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112