检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄峻 田永林 戴星原 王晓 平之行[4,5,9] HUANG Jun;TIAN Yonglin;DAI Xingyuan;WANG Xiao;PING Zhixing(The State Key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;Macao University of Science and Technology,Macao 999780,China;Qingdao Academy of Intelligent Industries,Qingdao 266000,China;Beijing Huairou Academy of Parallel Sensing,Beijing 101400,China;Beijing Engineering Research Center of Intelligent Systems and Technology,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;School of Artificial Intelligence,Anhui University,Hefei 230601,China;Engineering Research Center of Autonomous Unmanned System Technology,Ministry of Education,Hefei 230601,China;Anhui Provincial Engineering Research Center for Unmanned System and Intelligent Technology,Hefei 230601,China;North Automatic Control Technology Institute,Taiyuan 030006,China)
机构地区:[1]中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190 [2]澳门科技大学,中国澳门999078 [3]青岛智能产业技术研究院,山东青岛266000 [4]北京怀柔平行传感智能研究院,北京101400 [5]中国科学院自动化研究所北京市智能化技术与系统工程技术研究中心,北京100190 [6]安徽大学人工智能学院,安徽合肥230601 [7]自主无人系统技术教育部工程研究中心,安徽合肥230601 [8]安徽省无人系统与智能技术工程研究中心,安徽合肥230601 [9]北方自动控制技术研究所,山西太原030006
出 处:《智能科学与技术学报》2023年第2期180-199,共20页Chinese Journal of Intelligent Science and Technology
基 金:国家自然科学基金项目(No.62173329)。
摘 要:对周围车辆轨迹的精确预测可以辅助自动驾驶车辆做出合理的即时决策。虽然相比传统轨迹预测算法,深度学习方法已取得较好效果,但是自动驾驶车辆在异构高动态复杂变化环境下实现多模态高精度预测仍存在信息丢失、交互和不确定性难以建模、预测缺乏可解释性等问题。Transformer具备的长距离建模能力和并行计算能力使其不仅在自然语言处理领域取得巨大成功,而且在扩展至自动驾驶多模态轨迹预测任务时也解决了以上问题。基于此,对过去基于深度神经网络的方法,特别是对基于Transformer的方法进行全面总结与回顾;同时分析了Transformer相较于传统序列网络、图神经网络、生成模型的优势,并结合现有难题进行针对性分析与分类。Transformer模型可以更好地应用于多模态轨迹预测任务,此类模型具有更好的泛化性和可解释性。最后,对多模态轨迹预测未来发展方向进行了展望。Although deep learning methods have achieved better results than traditional trajectory prediction algorithms,there are still problems such as information loss,interaction and uncertainty difficulties in modelling,and lack of interpretability of predictions when implementing multimodal high-precision prediction for autonomous vehicles in heterogeneous,highly dynamic and complex changing environments.The newly developed Transformer's long-range modelling capability and parallel computing ability make it a great success not only in the field of natural language processing,but also in solving the above problems when extended to the task of multimodal trajectory prediction for autonomous driving.Based on this,the aim of this paper is to provide a comprehensive summary and review of past deep neural network-based approaches,in particular the Transformer-based approach.The advantages of Transformer over traditional sequential network,graphical neural network and generative model were also analyzed and classified in relation to existing challenges,simultaneously.Transformer models can be better applied to multimodal trajectory prediction tasks,and that such models have better generalisation and interpretability.Finally,the future directions of multimodal trajectory prediction were presented.
关 键 词:TRANSFORMER 序列网络 图神经网络 生成模型 轨迹预测 多模态
分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.97.46