检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张颖[1] 梁承权 覃振鹏 ZHANG Ying;LIANG Chengquan;QIN Zhenpeng(School of Intelligent Manufacturing,Nanning University,Nanning 530200,China)
出 处:《激光杂志》2023年第8期83-87,共5页Laser Journal
基 金:广西高校中青年教师科研基础能力提升项目(No.2019KY0945);南宁学院教授培育工程(No.2019JSGC07)。
摘 要:为解决采用单一特征分割红外图像多目标时,分割精度过低的问题,提出基于多级特征融合的红外图像多目标分割方法。分别提取红外图像的熵特征、对比度特征和梯度特征,采用并行加权特征融合方法融合所提取的红外图像的多级特征,构建红外图像的多级特征融合空间,设置红外图像的多级特征融合空间作为Mean-shift算法的遍历空间,对多级特征融合空间内的全部特征点实施均值漂移处理,获取红外图像多目标分割结果。实验结果表明,该方法可以利用所提取红外图像的多级特征,分割红外图像的多目标,红外图像多目标分割精度高达99.5%。In order to solve the problem that the segmentation accuracy is too low when using a single feature to segment infrared image multi-target,a multi-level feature fusion based infrared image multi-target segmentation meth-od is proposed.The entropy features,contrast features and gradient features of the infrared image are extracted respec-tively,and the multi-level features of the extracted infrared image is constructed by using the parallel weighted feature fusion method,and the multi-level feature fusion space of the infrared image is set as the traversal space of the mean-shift algorithm,and the mean shift processing is implemented for all feature points in the multi-level feature points in the multi-level feature fusion space to obtain the multi-target segmentation results of infrared image.The experimental results show that this method can use the multi-level features of the extracted infrared image to segment the multi-target of the infrared image,and the multi-target segmentation accuracy of the infrared image is as high as 99.5%.
关 键 词:多级特征融合 红外图像 多目标分割 对比度特征 梯度特征 MEAN-SHIFT算法
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46