针对变形零件的可变形曲面匹配方法研究  

Research on Deformable Surface Matching Method for Deformable Parts

在线阅读下载全文

作  者:周世林 阚艳 陈正涛[1] 范智 王皓[1] ZHOU Shilin;KAN Yan;CHEN Zhengtao;FAN Zhi;WANG Hao(Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,Shanghai Jiao Tong University,Shanghai 200240,China;Fraunhofer Institute for Manufacturing Engineering and Automation IPA,Germany)

机构地区:[1]上海交通大学上海市复杂薄板数字化制造重点实验室,上海200240 [2]德国弗劳恩霍夫制造工程与自动化研究所,德国

出  处:《机械设计与研究》2023年第4期1-6,15,共7页Machine Design And Research

基  金:国家科技重大专项(2019YFA0709001);国家自然科学基金(52022056)资助项目。

摘  要:当前,在利用点云匹配定位工业部件的过程中,主要的匹配方法都是基于刚性模型。然而在实际生产过程中,首先,部分零件存在制造偏差,导致传统刚性匹配误差过大,其次,部分零件质地较软,不适用于传统的刚性匹配方法,而当前缺乏有效的对此类零件变形情况识别的方法。文中提出了一种针对上述零件变形情况的非刚性曲面匹配方法,通过工业零件的特征和相应的刚性约束,利用可变形曲面匹配的方法,获得设计模型的实际变形情况,并对原始点云进行处理使之适配于该方法,通过与传统的刚性匹配进行对比,验证了该方法在匹配存在变形的部件时的可靠性。运用该方法可指导存在制造偏差的零件返修和准确定位质地柔软的零件真实姿态,可提高工业生产效率。At present,in the process of using point cloud matching to locate industrial components,the main matching methods are based on rigid models.However,in the actual production process,some parts have manufacturing deviation,which leads to traditional rigid matching error.Furthermore,some parts are soft,which is not suitable for traditional rigid matching methods.At present,there is no effective method to identify the deformation of such parts.This paper proposes a non-rigid surface matching method for the deformation of the above parts.Through the features of industrial parts and the corresponding rigid constraints,the actual deformation of the design model is obtained using the deformable surface matching method,and the original point cloud is processed to adapt to this method.The reliability of this method in matching parts with deformation is verified by comparing with traditional rigid matching.This method can be used to guide the repair of parts with manufacturing deviation and accurately locate the posture of soft parts,which can improve the industrial production efficiency.

关 键 词:非刚性 点云配准 仿射变换 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象