无界区域上分数阶Klein-Gordon方程的近似人工边界条件  

The Approximate Artificial Boundary Condition for the Fractional Klein-Gordon Equations in Unbounded Domains

在线阅读下载全文

作  者:朱荣坤[1] 梁宗旗[1] ZHU Rongkun;LIANG Zongqi(School of Science,Jimei University,Xiamen 361021,China)

机构地区:[1]集美大学理学院,福建厦门361021

出  处:《集美大学学报(自然科学版)》2023年第4期350-358,共9页Journal of Jimei University:Natural Science

基  金:国家自然科学基金项目(11901237);福建省自然科学基金项目(2020J01703)。

摘  要:为了研究无界区域上时间分数阶Klein-Gordon方程,利用Laplace变换和Lagrange插值,将无界区域上时间分数阶Klein-Gordon方程近似转化为无界区域上整数阶偏微分方程。在此基础上,利用人工边界方法得到3种不同情形下无界区域上整数阶偏微分方程的人工边界条件,从而将无界区域上时间分数阶Klein-Gordon方程近似转化成有界区域上人工边界条件下整数阶偏微分方程的初边值问题,并证明了人工边界条件下整数阶偏微分方程的稳定性。最后,构造了人工边界条件下整数阶偏微分方程的有限差分格式,并通过数值例子验证该格式的有效性。In order to study time-fractional Klein-Gordon equation on an unbounded domain,the Laplace transformation and the Lagrange interpolation were used to approximately transform the time-fractional Klein-Gordon equation on the unbounded domain into an integer order partial differential equation on the unbounded domain.On the basis,the artificial boundary method was used to obtain artificial boundary conditions of integer order partial differential equation in three different situations,thereby transforming the approxima-tion problem on the unbounded domain into the initial-boundary value problem with artificial boundary condition on the bounded domain,and prove the stability of the initial-boundary value problem on the bounded domain.Finally,finite difference scheme for the reduced problem in bounded domain was constructed and numerical example showed that artificial boundary method was efficient to solve time-fractional Klein-Gordon equation.

关 键 词:无界区域 时间分数阶Klein-Gordon方程 人工边界条件 LAPLACE变换 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象