检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱荣坤[1] 梁宗旗[1] ZHU Rongkun;LIANG Zongqi(School of Science,Jimei University,Xiamen 361021,China)
出 处:《集美大学学报(自然科学版)》2023年第4期350-358,共9页Journal of Jimei University:Natural Science
基 金:国家自然科学基金项目(11901237);福建省自然科学基金项目(2020J01703)。
摘 要:为了研究无界区域上时间分数阶Klein-Gordon方程,利用Laplace变换和Lagrange插值,将无界区域上时间分数阶Klein-Gordon方程近似转化为无界区域上整数阶偏微分方程。在此基础上,利用人工边界方法得到3种不同情形下无界区域上整数阶偏微分方程的人工边界条件,从而将无界区域上时间分数阶Klein-Gordon方程近似转化成有界区域上人工边界条件下整数阶偏微分方程的初边值问题,并证明了人工边界条件下整数阶偏微分方程的稳定性。最后,构造了人工边界条件下整数阶偏微分方程的有限差分格式,并通过数值例子验证该格式的有效性。In order to study time-fractional Klein-Gordon equation on an unbounded domain,the Laplace transformation and the Lagrange interpolation were used to approximately transform the time-fractional Klein-Gordon equation on the unbounded domain into an integer order partial differential equation on the unbounded domain.On the basis,the artificial boundary method was used to obtain artificial boundary conditions of integer order partial differential equation in three different situations,thereby transforming the approxima-tion problem on the unbounded domain into the initial-boundary value problem with artificial boundary condition on the bounded domain,and prove the stability of the initial-boundary value problem on the bounded domain.Finally,finite difference scheme for the reduced problem in bounded domain was constructed and numerical example showed that artificial boundary method was efficient to solve time-fractional Klein-Gordon equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.209.180