检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金露达 衣然 张关涛 王洪江[1] 张东杰[1,2] 李娟 JIN Lu-da;YI Ran;ZHANG Guan-tao;WANG Hong-jiang;ZHANG Dong-jie;LI Juan(Heilongjiang Bayi Agricultural University,Heilongjiang Daqing 163319,China;National Coarse Cereals Engineering Research Center,Heilongjiang Daqing 163319,China)
机构地区:[1]黑龙江八一农垦大学,黑龙江大庆163319 [2]国家杂粮工程技术研究中心,黑龙江大庆163319
出 处:《包装工程》2023年第19期75-84,共10页Packaging Engineering
基 金:国家重点研发计划(2018YFE0206300);黑龙江八一农垦大学青年创新人才计划(ZRCQC201805)。
摘 要:目的 构建一种新的径向基函数神经网络货架期预测模型。方法 研究不同贮藏温度下燕麦生鲜湿面的微生物、理化等指标的变化情况,通过Pearson相关性分析,筛选影响燕麦生鲜湿面货架期的主要因素,利用微生物生长动力学模型和径向基函数神经网络模型对燕麦生鲜湿面的剩余货架期进行预测。结果 微生物生长动力学模型不能很好地拟合燕麦生鲜湿面菌落总数的变化情况,预测精度较差,径向基函数神经网络预测模型的预测值与实际值的相对误差为2.66%。结论 径向基函数神经网络预测模型的效果较好,为以后食品货架期的预测提供了一定的参考依据。The work aims to construct a new radial basis function(RBF)neural network shelf life prediction model.The microbial,physical and chemical indexes of oat fresh wet noodles at different storage temperatures were studied,and the main factors affecting the shelf life of oat fresh wet noodles were screened out through Pearson correlation analysis.The remaining shelf life of oat fresh wet noodles was predicted by models of microbial growth kinetics and the RBF neural network,respectively.The microbial growth kinetics model could not fit the change of the total bacterial count of oat fresh wet noodles very well,and the prediction accuracy was poor.On the contrary,the relative error between the predicted value and the actual value of the RBF neural network prediction model was 2.66%,which was very little.The RBF neural network prediction model is effective,which provides a certain reference for the future prediction of food shelf life.
关 键 词:燕麦生鲜湿面 贮藏品质 径向基函数神经网络 货架期预测模型
分 类 号:TS213.24[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49