检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖艳婷 李锐定 黄国宏[2] 梁晓琳 周樊 麻志泽 时凤翠 李全阳[1] LIAO Yanting;LI Ruiding;HUANG Guohong;LIANG Xiaolin;ZHOU Fan;MA Zhize;SHI Fengcui;LI Quanyang(College of Light Industry and Food Engineering,Guangxi University,Nanning 530004,China;College of Food and Biotechnology,Guangxi Polytechnic,Nanning 530226,China)
机构地区:[1]广西大学轻工与食品工程学院,广西南宁530004 [2]广西职业技术学院食品与生物技术学院,广西南宁530226
出 处:《现代食品科技》2023年第10期79-88,共10页Modern Food Science and Technology
基 金:国家自然科学基金面上项目(31871802)。
摘 要:为提高具有益生特性格氏乳杆菌GU-G23的生物量,获取其高密度培养因子,该研究首先通过单因素实验和Plackett-Burman实验筛选出该菌株主要的生长营养因子为鱼蛋白胨、胰蛋白胨、柠檬酸三铵。以响应面实验设计组合作为机器模型训练样本,采用随机森林回归(Random Forest Regression,RFR)和径向基神经网络(Radial Basis Function Neural Network,RBF)模型对其培养基配方进行预测。以决定系数(R-squared,R^(2))、平均绝对误差(Mean Absolute Deviation,MAE)、均方误差(Mean-Square Error,MSE)和平均绝对百分误差(Mean Absolute Percentage Error,MAPE)作为模型评价指标,比较认为RBF在该研究中具有更好的预测性能。随后选择RBF神经网络和遗传算法(Genetic Algorithm,GA)结合对培养基主要成分进行了优化。最终获得该菌株培养基的优化配方为:鱼蛋白胨29.89 g/L,胰蛋白胨23.33 g/L,柠檬酸三铵4.34 g/L,蔗糖15.00 g/L,低聚果糖15.00 g/L,乙酸钠5.00 g/L磷酸氢二钾0.40 g/L,七水硫酸镁0.58 g/L,一水硫酸锰0.29 g/L,吐温-801.00 g/L。在此培养基条件下,所得样品活菌数达到5.21×10^(9)CFU/mL,是未优化前的4.57倍。该研究对微生物高密度培养优化预测提供了新的方法。To increase the biomass of probiotic Lactobacillus gasseri GU-G23 and identify factors associated with a high-density culture,the main nutritional factors required using a single-factor experiment and Plackett-Burman design were established.The three key factors comprised fish peptone,tryptone,and triammonium citrate.The training sample for the machine learning model was generated according to the response surface experimental design.The random forest regression(RFR)and radial basis function neural network(RBF)models were used to predict their culture medium formulas.The coefficient of determination(R-squared,R^(2)),mean absolute deviation(MAE),mean-square error(MSE),and mean absolute percentage error(MAPE)were adopted as model evaluation metrics.Comparisons revealed that RBF exhibited superior predictive performance.Subsequently,a combination of RBF neural network and genetic algorithm(GA)was selected to optimize the main components of the culture medium.The optimized formula comprised 29.89 g/L fish peptone,23.33 g/L tryptone,4.34 g/L triammonium citrate,15.00 g/L sucrose,15.00 g/L xylo-oligosaccharides,5.00 g/L sodium acetate,0.40 g/L dipotassium hydrogen phosphate,0.58 g/L magnesium sulfate heptahydrate,0.29 g/L manganese sulfate monohydrate,and 1.00 g/L Tween-80.Under this medium composition,the number of viable bacterial cells reached 5.21×10^(9)CFU/mL,which was 4.57 times higher than that before optimization.This study provides a new approach for the optimization of microbial high-density culture medium prediction.
关 键 词:格氏乳杆菌 培养基优化 随机森林 径向基神经网络 遗传算法
分 类 号:TS201.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.164.78