IMU和轮式里程计联合的雷达畸变校正算法  

Radar distortion correction algorithm based on IMU and wheel odometer fusion

在线阅读下载全文

作  者:刘佳豪 罗天放[1,2] 王桐[1,2] LIU Jiahao;LUO Tianfang;WANG Tong(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江哈尔滨150001

出  处:《应用科技》2023年第5期149-156,共8页Applied Science and Technology

基  金:国家级重点实验室基金项目(6142209190107);中央高校基本科研业务费项目(3072022QBZ0806).

摘  要:为了校正低帧率2D激光雷达在机器人快速移动时产生的运动畸变,提出一种惯性测量单元(inertial measurement unit,IMU)和轮式里程计联合的激光雷达运动畸变较正方法。在传统轮式里程计辅助法的基础上,针对轮式里程计高速时容易打滑造成角度测量误差较大的缺点,利用局部角速度精度较高的IMU数据来完成激光雷达角度误差的较正。算法采用麦克纳姆全向轮式机器人进行验证。实验结果表明:IMU和轮式里程计联合较正运动畸变的方法能够克服轮式里程计打滑的机械性缺陷,有效减小雷达的位移误差和角度误差,大大提高低帧率2D激光雷达地图构建的质量。In order to correct distortion of 2D laser radar data with low data frame rate when robots move rapidly,we propose a new method of laser radar motion distortion correction based on inertial measurement unit(IMU)and wheel odometer.Based on traditional auxiliary method of wheel odometer,in order to overcome the disadvantage that the wheel odometer is easy to slip at high speed,which causes large angle measurement error,the IMU data with high accuracy of partial angular velocity is used to correct the angle error of laser radar.The algorithm is verified by Mecanum omnidirectional wheeled robots.Experimental results show that the method of combining IMU and wheel odometer to correct motion distortion can overcome mechanical defect of wheel odometer slipping,and effectively reduce the displacement error and angle error of radar,which greatly improves the quality of low frame rate 2D laser radar map construction.

关 键 词:激光雷达 运动畸变 即时定位与地图构建 IMU 轮式里程计 传感器融合 线性插值 机器人操作系统 

分 类 号:TN958.98[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象