检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪哲翰 谢海滨[1] JI Zhehan;XIE Haibin(School of Banking and Finance,University of International Business and Economics,Beijing 100029)
出 处:《系统科学与数学》2023年第10期2598-2614,共17页Journal of Systems Science and Mathematical Sciences
基 金:对外经济贸易大学中央高校基本科研业务费专项资金(19YB26)资助课题。
摘 要:长期记忆性是时间序列的重要特征之一,对时间序列数据的预测有着重要影响.文章利用R/S分析、ARFIMA模型对中国利率期限结构的长期记忆性进行了实证分析,结果表明:中国利率期限结构存在显著的长期记忆性,刻画长期记忆性的ARFIMA模型可以显著地提升对利率期限结构的预测效果,并且随着预测步长的增加,预测效果提升得更为明显.因此,在实践中应重视利率期限结构的长期记忆性,充分发挥利率期限结构长期记忆性在利率期限结构预测中的作用.Long-term memory is one of the most important characteristics of time series and has great impact on time series forecasting.In this paper,based on R/S analysis and ARFIMA model,we perform an empirical analysis on the long-term memory of the term structure of interest rate of China.The results show that China's term structure of interest rate has significant long-term memory.Out-of-sample forecasting results show that ARFIMA model,which imports long-term memory infuence,significantly improves the forecasting of the term structure of interest rate,and the improvement becomes more obvious with the forecast step grows.Therefore,in practice,we should pay attention to the long-term memory of the term structure of interest and give full play to the role of long-term memory of interest rate term structure in the prediction of the term structure of interest rate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49