利用图像分析和深度学习预测油菜籽中总酚含量  被引量:1

Predicting total phenolic content in rapeseed using image analysis and deep learning

在线阅读下载全文

作  者:黄晓琛 张凯利 肖华明 刘元杰 赵志聪 陈洪[1] 魏芳[1] HUANG Xiao-Chen;ZHANG Kai-Li;XIAO Hua-Ming;LIU Yuan-Jie;ZHAO Zhi-Cong;CHEN Hong;WEI Fang(Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Key Laboratory of Oilseeds Processing,Ministry of Agriculture and Rural Affairs,Hubei Key Laboratory of Lipid Chemistry and Nutrition,Oil Crops and Lipids Process Technology National&Local Joint Engineering Laboratory,Wuhan 430062,China;College of Information and Electrical Engineering,China Agricultural University/Key Laboratory of Agricultural Information Acquisition Technology,Ministry of Agriculture and Rural Affairs,Beijing 100083,China;National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan 430070,China)

机构地区:[1]中国农业科学院油料作物研究所/农业农村部油料加工重点实验室/湖北省油料脂质化学与营养重点实验室/油料油脂加工技术国家地方联合工程实验室,武汉430062 [2]中国农业大学信息与电气工程学院/中国农业大学农业农村部农业信息获取技术重点实验室,北京100083 [3]华中农业大学作物遗传改良全国重点实验室,武汉430070

出  处:《食品安全质量检测学报》2023年第19期29-36,共8页Journal of Food Safety and Quality

基  金:国家自然科学基金项目(U21A20274);国家重点研发计划专项(2021YFD1600103);农业农村部油料作物生物学与遗传育种重点实验室开放课题项目(KF2023008);中国农业科学院创新工程项目(CAAS-ASTIP-2013-OCRI)。

摘  要:目的建立了一种结合图像分析和深度学习的油菜籽中总酚含量的快速预测方法。方法利用VGG19网络进行油菜籽图像籽粒特征的提取,通过多个卷积层来学习油菜籽图像的特征,并建立了回归模型用于预测油菜籽的总酚含量。共收集了100种油菜籽样本,将油菜籽样本按照3:1的比例划分为训练集和测试集,利用均方损失函数(MSELoss)和决定系数(r^(2))评估模型预测准确性。结果测试集MSELoss=0.0085、r^(2)=0.9914,表明该预测模型具有一定的准确性和实用性。结论本研究提出了一种快速、准确的评估油菜籽总酚含量的方法,为油菜籽的总酚测定提供一种快速、准确的智能化检测方法。Objective To establish a rapid method for predicting total phenol content in rapeseed by combining image analysis and deep learning.Methods The VGG19 network was used to extract features of rapeseed images,multiple convolutional layers were used to learn the features of rapeseed images,and a regression model was established to predict the total phenolic content of rapeseed.A total of 100 rapeseed samples were collected,and the rapeseed samples were divided into training sets and test sets at a ratio of 3:1.The mean square loss function(MSELoss)and coefficient of determination(r^(2))were used to evaluate the model prediction accuracy.Results On the test set,MSELoss was 0.0085,r^(2)was 0.9914,indicating that the prediction model had certain accuracy and practicality.Conclusion This study proposes a rapid and accurate method to evaluate the total phenolic content of rapeseed,which can provide a rapid and accurate intelligent detection method for the determination of total phenol of rapeseed.

关 键 词:油菜籽 图像分析 总酚含量 深度学习 

分 类 号:TS222.1[轻工技术与工程—粮食、油脂及植物蛋白工程] TP18[轻工技术与工程—食品科学与工程] TP391.41[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象