检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐紫钰 吴克晴[1] XU Ziyu;WU Keqing(School of Science,Jiangxi University of Science and Technology,Ganzhou Jiangxi 341000,China)
出 处:《广西师范大学学报(自然科学版)》2023年第6期92-104,共13页Journal of Guangxi Normal University:Natural Science Edition
基 金:国家自然科学基金(61364015)。
摘 要:考虑一类非线性p-Laplacian分数阶微分方程耦合系统多点边值问题,其中非线性函数包含Caputo分数阶导数,其边界条件包含非线性积分项。基于和算子的广义不动点定理及分数阶微积分算子的性质,分析该耦合系统的唯一正解;借助相应算子方程推导出唯一正解的存在性;通过数值算例对主要结果进行检验分析。A class of nonlinear p-Laplacian fractional differential equation coupling systems with multipoint boundary value problems is considered where the nonlinear function contains the Caputo fractional derivative and the boundary conditions include nonlinear integral terms.Based on the generalized fixed point theorem of sum operator and the properties of fractional calculus operator,the unique positive solution of the coupling system is analyzed.The existence of the unique positive solution is deduced by means of the corresponding operator equation,and the main results are obtained.The main results are tested by numerical examples.
关 键 词:正解 分数阶导数 算子方程 P-LAPLACIAN 唯一性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.232.123