检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄恒一[1] 温戈 吉训贤 邢益鹏 洪乐 HUANG Heng-yi;GE Wen;JI Xun-xian;XING Yi-peng;HONG Le(University of Sanya,Sanya 572000,Hainan)
出 处:《电脑与电信》2023年第8期80-84,97,共6页Computer & Telecommunication
摘 要:路径规划作为机器人技术研究领域的一项关键技术,近年来被广泛应用于智能物流、智能家居、海上搜救、巡航等领域。一个具备优秀路径规划能力的机器人不仅能够在充满障碍的环境中快速规划出一条安全且平滑的路径,还能保证这条路径在某项评价指标上达到最优。以移动机器人作为应用载体,针对A*算法在静态障碍环境中的全局路径规划问题与动态窗口法在动态障碍环境中的局部路径规划问题进行了深入研究分析,并对这两种算法进行了相对应的改进、融合及通过Python环境下的仿真测试,测试结果验证使这两种算法的优势得到互补,解决了单一算法一直无法解决的实时避障能力差与全局搜索能力差的问题。As an essential key technology in the research field of robot technology,path planning has been widely used in intelligent logistics,smart home,maritime search and rescue,cruise and other fields in recent years.A robot with excellent path planning ability can not only quickly plan a safe and smooth path in an environment full of obstacles,but also ensure that the path is optimal in a certain evaluation index.Taking mobile robot as the application carrier,this paper conducts in-depth research and analysis on the global path planning problem of A*algorithm in the static obstacle environment and the local path planning problem of dynamic window method in the dynamic obstacle environment,and makes corresponding improvement and fusion of the two algorithms,and passes the simulation test in Python environment.The test results verify that the advantages of the two algorithms are complementary.It solves the problem of poor real-time obstacle avoidance ability and global search ability that cannot be solved by a single algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117