检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚闯 戴程浩 江维 于俊康 陈振 GONG Chuang;DAI Chenghao;JIANG Wei;YU Junkang;CHEN Zhen(School of Mechanical Engineering and Automation,Wuhan Textile UniversityWuhan,430200,China;Hubei Provincial Key Laboratory of Digital Textile Equipment,Wuhan Textile University,Wuhan,430200,China)
机构地区:[1]武汉纺织大学机械工程与自动化学院,武汉430200 [2]数字化纺织装备湖北省重点实验室,武汉430200
出 处:《纺织工程学报》2023年第5期57-67,共11页JOURNAL OF ADVANCED TEXTILE ENGINEERING
基 金:数字化纺织装备湖北省重点实验室开放课题资助项目(DTL2022004)。
摘 要:大型织机车间运载机器人是一种实现在织机车间内向指定位置进行物料转运工作的一种智能化装备。由于在织机车间内智能运载机器人需要结合运载需求并通过避障选择不同路径到达目标位置,因此如何对机器人的路径进行规划和优化是提升机器人运输效率的关键。针对A^(*)算法规划路径不够平滑的问题,对规划路径进行贝塞尔曲线优化,使得路径平滑连续,提高运载机器人的运输效率。针对规划路径距离障碍物较近,存在安全风险的问题,采用障碍物膨胀优化,为运载机器人在运输过程中设置了安全区域,提高机器人在运输过程中的安全性。针对传统A^(*)算法搜索速度慢的问题,采用多段动态加权方法改进传统A^(*)算法的启发函数,提高算法路径规划搜索速度。最后,结合大型织机车间工作环境,搭建了仿真平台,仿真结果表明,相比传统A^(*)算法,采用多段动态加权改进的A^(*)算法在路径规划速度方面提升了39.8%,经过贝塞尔曲线与障碍物膨胀优化的多段动态加权改进A^(*)算法其路径规划速度提升了45.2%,验证了所提出的大型织机车间运载机器人改进A^(*)路径规划算法的可行性和有效性。The large-scale loom workshop transport robot is an intelligent equipment designed for material transportation within weaving workshops to specified locations.As intelligent transport robots within the weaving workshop need to combine transportation requirements and navigate through different paths to reach the target location while avoiding obstacles,how to plan and optimize the robot's path is crucial for enhancing transport efficiency.In response to the issue of the lack of smoothness in the path planned by the A^(*)algorithm,the planned path is optimized using Bezier curves,resulting in smoother and continuous paths,thus improving the efficiency of the transport robot during transportation.In response to the issue of safety risks associated with the proximity of the transport vehicle to obstacles,obstacle expansion optimization is adopted to set up a safe area for the robot in path planning,improving its safety during transportation.In response to overcome the slow search speed of the traditional A^(*)algorithm,a multi-segment dynamic weighting method is applied to improve the heuristic function of the A^(*)algorithm,thereby enhancing its search speed.Lastly,considering the working environment of the large-scale weaving workshop,a simulation platform is constructed.Simulation results indicate that compared to the traditional A^(*)algorithm,the multi-segment dynamic weighting improved A^(*)algorithm enhances path planning speed by 39.8%.Furthermore,the path planning speed is improved by 45.2%through the adoption of the multi-segment dynamic weighting improved A^(*)algorithm with Bezier curve optimization and obstacle inflation optimization.These findings validate the feasibility and effectiveness of the proposed improved A^(*)path planning algorithm for the large-scale weaving workshop transport robot,as presented in this paper.
关 键 词:织机车间机器人 路径规划 改进A^(*)算法 贝塞尔曲线 启发函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222