一种基于双通道的水下图像增强卷积神经网络  被引量:1

An enhanced convolutional neural network for underwater images based on dual channels

在线阅读下载全文

作  者:王树林 杨建民[1,2] 卢昌宇 刘路平 WANG Shulin;YANG Jianmin;LU Changyu;LIU Luping(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;SJTU Yazhou Bay Institute of Deepsea SCI-TECH,Sanya 572024,China)

机构地区:[1]上海交通大学海洋工程国家重点实验室,上海200240 [2]上海交通大学三亚崖州湾深海科技研究院,海南三亚572024

出  处:《海洋工程》2023年第6期158-170,共13页The Ocean Engineering

基  金:海南省科技计划三亚崖州湾科技城自然科学基金联合资助项目(2021JJLH0001);上海市科委资助项目(19DZ1207300)。

摘  要:近年来各国对于海洋生物的保护意识日益强烈,用来监测海洋生物生存状态的水下机器人装备的研发是保护海洋生物资源的关键。水下相机是这类机器人在水下进行海洋生物监测时的光学感知设备。然而水下环境复杂,拍摄到的图像模糊不清,为解决水下图像模糊等问题,提出了一种基于双通道的水下图像增强卷积神经网络。在网络的编码器中采用双通道结构,其中一个通道采用了密集连接和高效通道注意力机制,提取水下图像的细节特征,另一个通道采用多尺度结构,提取原始图像的多尺度语义特征。接着,在网络中引入残差注意力模块和自适应特征融合模块,进一步优化了特征。最后将优化后的特征输入解码器重建出增强后的水下图像。试验表明:提出的网络算法在UIQM指标和Entropy指标上分别为3.0056和7.6547,较第二名的算法分别高出0.0975和0.1232。In recent years,countries have become increasingly aware of the protection of marine organisms.The research and development of robot equipment used to monitor the living state of marine organisms is the key to the protection of marine living resources.Underwater camera is an optical sensing device for marine biological monitoring.However,the underwater environment is complicated and the images taken are blurred.To solve the problems of underwater image blurring,a dual-channel enhanced convolutional neural network for underwater images is proposed.In the network encoder,a two-channel structure is adopted.One channel adopts the intensive connection and efficient channel attention mechanism to extract the detailed features of underwater images,while the other channel adopts the multi-scale structure to extract the multi-scale semantic features of the original images.Then,residual attention module and adaptive feature fusion module are introduced into the network to further optimize features.Finally,the enhanced underwater image is reconstructed by inputting the optimized features into the decoder.Experiments show that the proposed network algorithm has a UIQM index of 3.0056 and an Entropy index of 7.6547,which are 0.0975 and 0.1232 higher than the second algorithm.

关 键 词:卷积神经网络 水下图像增强 损失函数 密集连接 注意力机制 多尺度 

分 类 号:P751[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象