检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏铁明[1] 李鹏博 徐志祥[1] 梁琛 王宣平 刘玮 SU Tieming;LI Pengbo;XU Zhixiang;LIANG Chen;WANG Xuanping;LIU Wei(School of Mechanical Enginnering,Dalian University of Technology,Dalian 116024,China;Jiuyi Aerospace Technology(Dalian)Co.,Ltd.,Dalian116085,China)
机构地区:[1]大连理工大学机械工程学院,辽宁大连116024 [2]久亿航宇科技(大连)有限公司,辽宁大连116085
出 处:《计算机测量与控制》2023年第12期210-215,共6页Computer Measurement &Control
摘 要:针对堆叠密集的堆垛货箱出现的漏检情况以及难以分割出每个货箱的精确边缘而造成的难以准确抓取的问题,对深度学习实例分割算法YOLACT进行了相应的改进;使用工业相机采集货箱的堆垛图像,利用Labelme标注图像制作数据集,并且通过数据增强方法扩充数据集;为了提高模型的分割准确率,分别对掩码真值和YOLACT中的原型掩码输出分支(Protonet)的预测掩码使用Canny边缘检测算子,并取二者的二值交叉熵损失作为损失函数加入到原网络中训练;使用训练好的最优模型对测试集图像数据进行试验;结果表明,改进后的模型预测掩码mAP_(0.5:0.95)可以达到0.543,比原模型提高2.2%,同时货箱边缘的分割精度也得到了一定的提升,模型推理速度可达10.2帧/秒,可以满足精度要求和生产节拍要求。Aimed at the problems of missing detection on densely stacked packing boxes and difficult to accurately capture due to segmenting the inexact edges of each packing box,the deep learning instance segmentation algorithm YOLACT was improved.The industrial camera was used to collect the stacking image of the packing box,the Labelme was used to annotate the image and create the dataset,and the dataset was expanded through the data enhancement method;In order to improve the segmentation accuracy of the model,the Canny edge detection operator was used for the mask truth value and predicted mask of the prototype mask output branch(Protonet)in YOLACT,respectively,and the binary cross-entropy loss of them was added to the original network as a loss function;The trained optimal model was used to test the image data of the test set.The results show that the predicted mask mAPo.5;0.5 of the improved model can reach 0.543,which is 2.2%higher than that of the original model.At the same time,the seg-mentation accuracy of the packing box edge is also improved to a certain extent.The inference speed of the model can reach 10.2 frames/second(FPS),which can meet the requirements of the segmentation accuracy and cycle time in the production.
关 键 词:堆垛 边缘检测 YOLACT CANNY 损失函数
分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31