检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龙滔 余越昕 LONG Tao;YU Yuexin(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105)
机构地区:[1]湘潭大学数学与计算科学学院,湘潭411105
出 处:《工程数学学报》2023年第6期929-940,共12页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(12271367);湖南省教育厅重点项目(21A0115).
摘 要:刚性泛函微分方程数值方法的研究大多是在内积空间中基于单边Lipschitz常数具有适度大小的条件下进行;然而对于某些刚性问题,其单边Lipschitz常数却不可避免地取非常巨大的正值。因此有必要突破内积空间和单边Lipschitz常数的限制,直接在Banach空间中探讨相应的数值方法。针对Banach空间中的非线性复合刚性Volterra泛函微分方程,对其非刚性部分采用显式Euler方法求解,刚性部分采用隐式Euler方法求解,得到了求解该问题的隐显Euler方法,论证了方法的稳定性和渐近稳定性。数值试验结果验证了所获理论的正确性。The study of numerical methods for stiff functional differential equations is mostly carried out in the inner product space based on the assumption that the one-sided Lipschitz constant has a moderate size,whereas for some stiff problems,the one-sided Lipschitz constant inevitably takes very large positive values.Therefore,it is necessary to break through the limitations of inner product space and one-sided Lipschitz constant and study the related numerical methods directly in the Banach space.For the nonlinear composite stiff Volterra functional differential equation in Banach space,the non-stiff part is solved by the explicit Euler method and the stiff part is solved by the implicit Euler method,obtained from which is the implicit-explicit Euler method for solving the problem.The stability and asymptotic stability about the proposed method are established,and the numerical results verify the correctness of the obtained theory.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.249.33