基于多智能体强化学习的无人艇集群集结方法  被引量:3

A coordinated rendezvous method for unmanned surface vehicle swarms based on multi-agent reinforcement learning

在线阅读下载全文

作  者:夏家伟 刘志坤 朱旭芳[3] 刘忠[1] XIA Jiawei;LIU Zhikun;ZHU Xufang;LIU Zhong(School of Weaponry Engineering,Naval University of Engineering,Wuhan 430033,China;Qingdao campus,Naval Aviation University,Qingdao 266014,China;School of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China)

机构地区:[1]海军工程大学兵器工程学院,武汉430033 [2]海军航空大学青岛校区,青岛266014 [3]海军工程大学电子工程学院,武汉430033

出  处:《北京航空航天大学学报》2023年第12期3365-3376,共12页Journal of Beijing University of Aeronautics and Astronautics

基  金:中国博士后基金(2016T45686);湖北省自然科学基金(2018CFC865)。

摘  要:为解决数量不定的同构水面无人艇(USV)集群以期望队形协同集结的问题,提出一种基于多智能体强化学习(MARL)的分布式集群集结控制方法。针对USV通信感知能力约束,建立集群的动态交互图,通过引入二维网格状态特征编码的方法,构建维度不变的智能体观测空间;采用集中式训练和分布式执行的多智能体近端策略优化(MAPPO)强化学习架构,分别设计策略网络和价值网络的状态空间和动作空间,定义收益函数;构建编队集结仿真环境,经过训练,所提方法能有效收敛。仿真结果表明:所提方法在不同期望队形、不同集群数量和部分智能体失效等场景中,均能成功实现快速集结,其灵活性和鲁棒性得到验证。To address the challenge of rendezvousing an indeterminate number of homogeneous unmanned surface vehicles(USV)into desired formations,a distributed rendezvousing control method is introduced,leveraging multi-agent reinforcement learning(MARL).Recognizing the communication and perception constraints inherent to USVs,a dynamic interaction graph for the swarm is crafted.By adopting a two-dimensional grid encoding methodology,a consistent-dimensional observation space for each agent is generated.Within the multi-agent proximal policy optimization(MAPPO)framework,which incorporates centralized training and distributed execution,the state and action spaces for both the policy and value networks are distinctly designed,and a reward function is articulated.Upon the construction of a simulated environment for USV swarm rendezvous,it is highlighted in our results that the method achieves effective convergence post-training.In scenarios encompassing varying desired formations,differing swarm sizes,and partial agent failures,swift rendezvous is consistently ensured by proposed method,underlining its flexibility and robustness.

关 键 词:无人艇 集群系统 多智能体强化学习 深度强化学习 集结方法 近端策略优化 

分 类 号:U664.82[交通运输工程—船舶及航道工程] TP18[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象