检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张庚 杨超[1] 王伟达[1] 李颖[1] ZHANG Geng;YANG Chao;WANG Weida;LI Ying(Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]北京理工大学,北京100081
出 处:《汽车工程学报》2024年第1期1-13,共13页Chinese Journal of Automotive Engineering
基 金:国家自然科学基金项目(52102449);中国博士后科学基金项目(2021M690394)。
摘 要:同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术可使自动驾驶车辆在未知环境中根据车载传感器采集到的数据估计自身位姿,建立环境地图,为车辆的规划、决策提供定位信息,是近年来自动驾驶技术研究的热点之一。基于车载激光雷达的点云数据,聚焦SLAM技术在自动驾驶领域的应用,围绕前端里程计、后端优化和回环检测技术,对国内外相关研究进行综述。考虑到单一传感器的局限性,结合目前多传感器融合研究的热点与难点,展望了自动驾驶多传感器融合SLAM技术在自动驾驶领域的机遇与挑战。Simultaneous localization and mapping(SLAM)technology enables autonomous vehicles to estimate their own poses and establish the map of an unknown environment according to the data collected by onboard sensors.SLAM can provide localization information to the decision-making module for vehicle planning,and has become one of the research hotspots of autonomous driving technology in recent years.Based on the point cloud data collected by LiDAR,this paper focuses on the SLAM technology applied in autonomous driving.The related research at home and abroad has been reviewed including the front-end odometry,the back-end optimization and loop closure detection.Due to the limitations of a single sensor,the opportunities and challenges of multi-sensor fusion SLAM technology for autonomous driving are discussed based on the research hotspots and difficulties in the field of multi-sensor fusion.
关 键 词:自动驾驶 同步定位与建图 激光雷达 前端里程计 后端优化 回环检测
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28