检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张诺 王素格[1,2] 李大宇 Zhang Nuo;Wang Suge;Li Dayu(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,Shanxi,China;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,Shanxi University,Taiyuan 030006,Shanxi,China)
机构地区:[1]山西大学计算机与信息技术学院,山西太原030006 [2]山西大学计算智能与中文信息处理教育部重点实验室,山西太原030006
出 处:《计算机应用与软件》2024年第1期343-349,共7页Computer Applications and Software
基 金:山西省重点研发计划项目(201803D421024)。
摘 要:直接获取文本中的三元组,往往存在语义联系较弱、距离过长和一词多义的问题,因此,提出基于BERT预训练的位置感知的两阶段旅游三元组知识抽取方法。利用BERT-Span模型通过边界预测方法对旅游实体进行识别;利用旅游数据中的字、语义、位置和实体类型特征,构建融合位置感知注意力和头尾实体类型的关系抽取模型。在山西旅游数据集上进行实验,实验结果表明提出的方法优于基准模型的F1值。The directly-acquired texts often have problems such as weak semantic connection,excessive length,and polysemy.Therefore,this paper proposes a two-stage triplet knowledge extraction method via location-wise based on BERT pre-training.The BERT-Span model was used to achieve entity recognition of tourism through boundary prediction.A relationship extraction model combining positional perception attention and head-tail entity type was constructed based on the character,semantics,location,and entity type characteristics.The experimental results on the Shanxi tourism data set show that the proposed method is superior to benchmark models in the F1 value.
关 键 词:旅游知识图谱 三元组 实体识别 关系抽取 位置感知
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38