检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张亚丽 冯伟 全英汇 邢孟道[1,2] ZHANG Yali;FENG Wei;QUAN Yinghui;XING Mengdao(School of Electronic Engineering,Xidian University,Xi’an 710071,China;Academy of Advanced Interdisciplinary Research,Xidian University,Xi’an 710071,China)
机构地区:[1]西安电子科技大学电子工程学院,陕西西安710071 [2]西安电子科技大学前沿交叉研究院,陕西西安710071
出 处:《系统工程与电子技术》2024年第2期407-418,共12页Systems Engineering and Electronics
基 金:国家自然科学基金(62201438,61772397,12005159);陕西林业科技创新重点专项(SXLK2022-02-8);陕西省自然科学基础研究计划(2021JC-23);榆林市科技局科技发展专项(CXY-2020-094)资助课题。
摘 要:针对极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像存在斑点噪声严重、可视性差、直接影响目标识别精度的问题,提出一种基于多源遥感图像多级协同融合的舰船识别算法。通过采用多级协同融合方式,丰富图像的特征量,提高舰船识别精度。所提方法首先进行多源遥感数据的像素级融合,然后在上一步基础上进行特征级融合,最终得到新的目标特征。所提方法充分发挥了不同频段的PolSAR与多光谱图像的信息互补优势,不仅保留了多频段PolSAR对目标的极化散射特征,也保留了多光谱数据的空-谱信息。所提方法在可视性与检测精度上表现都较为出色,与传统的单一遥感数据相比,识别精度至少提高了5.12%。The problem of serious speckle noise and poor visibility in polarimetric synthetic aperture radar(PolSAR)directly affect the accuracy of target recognition.A ship recognition algorithm based on the multi-level cooperative fusion of multi-source remote sensing images is proposed.The method of multi-level cooperative fusion is adopted to enrich the image features and improve the accuracy of ship recognition.Firstly,the multi-source remote sensing data is fused at the pixel level.Then,the feature-level fusion is carried out on the basis of the previous step.Finally,new target features are obtained.This method gives full play to the information complementarity advantage of PolSAR and multispectral images in different frequency bands.This method retains the polarization scattering characteristics of the target in different frequency bands of PolSAR.Meantime,the spectral-spatial information of multispectral data is also retained.Compared with the traditional single remote sensing data,the proposed method performs better in visibility and detection accuracy.The recognition accuracy of the proposed method is improved by 5.12%at least.
分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171