分数阶CEV模型下未定权益的紧致差分法  被引量:1

Compact difference method with contingent claim under fractional CEV model

在线阅读下载全文

作  者:胡青 喻喜沩 孙玉东 HU Qing;YU Xiwei;SUN Yudong(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;School of Politics and Economics Management,Guizhou Minzu University,Guiyang 550025,China)

机构地区:[1]贵州民族大学数据科学与信息工程学院,贵阳550025 [2]贵州民族大学政治与经济管理学院,贵阳550025

出  处:《哈尔滨商业大学学报(自然科学版)》2024年第1期110-117,共8页Journal of Harbin University of Commerce:Natural Sciences Edition

摘  要:提出一种关于求解分数阶CEV模型下未定权益的紧致差分法.在时间上采用Caputo导数进行离散,在空间上采用4阶紧致差分格式进行离散.针对未定权益,得到一个时间2-α阶,空间4阶精度的紧致差分格式.并且运用傅里叶分析法和数学归纳法验证该方法的稳定性和收敛性.最后,通过数值实验验证该方法的有效性.A compact difference scheme for solving contingent claim in fractional CEV models was proposed.In time,Caputo derivative was used for discretization,and in space,fourth order compact difference scheme was used for discretization.A compact difference scheme with time order 2-αand space order 4 precision was obtained for European contingent claim.Fourier analysis and mathematical induction were used to verify the stability and convergence of the proposed method.Finally,the effectiveness of the proposed method was verified by numerical experiments.

关 键 词:CVE模型 CAPUTO导数 紧致差分格式 傅里叶分析法 稳定性 收敛性 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象