基于多组卷积神经网络的梭子蟹性别识别研究  被引量:4

Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus

在线阅读下载全文

作  者:魏天琪 郑雄胜 李天兵 王日成 WEI Tianqi;ZHENG Xiongsheng;LI Tianbing;WANG Richeng(School of Marine Engineering Equipment,Zhejiang Ocean University,Zhoushan 316002,China;City University of Hefei,Hefei 231131,China)

机构地区:[1]浙江海洋大学海洋工程装备学院,浙江舟山316002 [2]合肥城市学院,安徽合肥231131

出  处:《南方水产科学》2024年第1期89-98,共10页South China Fisheries Science

基  金:浙江省“尖兵”“领雁”研发攻关计划项目(2022C02001);舟山市科技计划项目(2021C21005)。

摘  要:为了实现梭子蟹的智能化分拣,高精度的智能识别分类成为亟待开发的关键技术。首先对采集到的梭子蟹图像进行预处理和数据增强,构建出梭子蟹性别分类数据集(Portunus gender classification dataset,PGCD);提出一种基于多组卷积神经网络的梭子蟹性别识别方法,该方法主要使用ResNet50从图像块中提取特征,降低特征提取过程的信息损失。为了更专注地找出输入数据的有用信息,开发出一种注意力机制来强调全局特征图中的细节重要性;最后进行了一系列的参数调整,提高了网络的训练效率和分类精度。实验结果显示,该方法在PGCD上的分类准确率、召回率和查准率分别达到95.59%、94.41%和96.68%,识别错误率仅为4.41%。表明该方法具有优越的分类性能,可用于梭子蟹性别的自动分类及识别系统。High-precision intelligent recognition and classification has become a key technology for intelligent sorting of Portunus trituberculatus.We first preprocessed and enhanced the collected images of P.tritubereulatus so as to build a Portunus gender classification dataset(PGCD).Besides,we proposed a multi-group convolutional neural network for gender classification of P.tritubereulatus,mainly using ResNet50 to extract features from image patches,thereby reducing information loss during the feature extraction process.In order to focus more on finding useful information of input data,we also constructed an attention mechanism before gender classification to emphasize the importance of details in the global feature map.The results show that the classification accuracy,recall and accuracy of this method on PGCD were 95.59%,94.41%and 96.68%,respectively,with a recognition error rate of only 4.41%.It is concluded that the method has superior classification performance and can be used in automatic classification and recognition systems for Portunus gender.

关 键 词:梭子蟹 图像分类 性别识别 特征提取 特征融合 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象