检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晶晶 杜兴卓[1,2,3] 支帅 丁国鹏 ZHANG Jingjing;DU Xingzhuo;ZHI Shuai;DING Guopeng(School of Automation,China University of Geosciences(Wuhan),Wuhan 430074,China;Hubei Provincial Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems,Wuhan 430074,China;Engineering Research Center of Earth Exploration Intelligent Technology,Ministry of Education,Wuhan 430074,China;Innovation Academy for Microsatellites of Chinese Academy of Sciences,Shanghai 201203,China;Shanghai Microsatellite Engineering Center,Shanghai 201203,China)
机构地区:[1]中国地质大学(武汉)自动化学院,湖北武汉430074 [2]复杂系统先进控制与智能自动化湖北省重点实验室,湖北武汉430074 [3]地球探测智能化技术教育部工程研究中心,湖北武汉430074 [4]中国科学院微小卫星创新研究院,上海201203 [5]上海微小卫星工程中心,上海201203
出 处:《光学精密工程》2024年第3期445-455,共11页Optics and Precision Engineering
基 金:中国科学院国防科技创新实验室基金资助项目(No.CXJJ-19S012);国家自然科学基金资助项目(No.42001408)。
摘 要:为解决基于深度学习的立体匹配方法面临着网络规模大、网络结构复杂等问题,提出了一个网络规模较小、精度较高的网络结构。该网络在特征提取模块删减修改了复杂冗余的残差层并引入了空洞卷积金字塔池化模块来扩大视野范围,提取更多有用的上下文信息;在代价计算模块中使用了三维卷积层以成本聚合提升立体匹配的精度;最后,在代价聚合模块引用了双边格网模块以较低分辨率的成本量来获取精度较高的视差图。将该网络在KITTI 2015数据集和Scene Flow数据集等主流数据集上进行实验,结果显示,相较于其他主流优秀网络类如金字塔立体匹配网络(Pyramid Stereo Matching Network,PSM-Net),网络规模参数量减少了约38%,并取得了较高的实验精度,其中Scene Flow数据集的终点误差(End-point Error,EPE)为0.86,是一个同时兼顾速度与精度的立体匹配网络。To address the challenges of large-scale and complex network structures in deep learning-based stereo matching,this work introduces a compact yet highly accurate network.The feature extraction mod⁃ule simplifies by removing complex,redundant residual layers and incorporating an Atrous Spatial Pyramid Pooling(ASPP)module to broaden the field of view and enhance contextual information extraction.For cost calculation,three-dimensional(3D)convolutional layers refine stereo matching accuracy through cost aggregation.In addition,a bilateral grid module is integrated into the cost aggregation process,achieving precise disparity maps with reduced resolution demands.Tested on widely-used datasets like KITTI 2015 and Scene Flow,our network demonstrates a significant reduction in parameters by approximately 38%compared to leading networks like Pyramid Stereo Matching Network(PSM-Net),without compromis⁃ing on experimental accuracy.Notably,it achieves an end-point error(EPE)of 0.86 on the Scene Flow dataset,outperforming many top-performing networks.Thus,our network effectively balances speed and accuracy in stereo matching.
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28