中文电子病历信息提取方法研究综述  被引量:2

Research progress on information extraction methods of Chinese electronic medical records

在线阅读下载全文

作  者:吉旭瑞 魏德健[1] 张俊忠[1] 张帅[1] 曹慧[1] JI Xu-rui;WEI De-jian;ZHANG Jun-zhong;ZHANG Shuai;CAO Hui(College of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Ji nan 250355,China)

机构地区:[1]山东中医药大学智能与信息工程学院,山东济南250355

出  处:《计算机工程与科学》2024年第2期325-337,共13页Computer Engineering & Science

基  金:国家自然科学基金(81973981,82074579);山东省中医药科技项目(2020M006)。

摘  要:电子病历里承载的大量医疗信息能够帮助医生更好地了解患者的情况,辅助医生进行临床诊断。作为中文电子病历信息提取的2大核心任务,命名实体识别和实体关系抽取的目标是识别出电子病历文本中的医学实体并提取出各个实体间的医学关系。首先,系统阐述了中文电子病历的研究现状,指出命名实体识别和实体关系抽取2大任务在中文电子病历信息提取中所发挥的重要作用。随后,介绍了面向中文电子病历信息提取的命名实体识别和关系抽取算法的最新研究成果,并分析了每个阶段各个模型的优缺点。最后,讨论了中文电子病历现阶段所存在的问题并对未来的研究趋势进行展望。The large amount of medical information carried in the electronic medical record can help doctors better understand the situation of patients and assist doctors in clinical diagnosis.As the two core tasks of Chinese electronic medical record(EMR)information extraction,named entity recognition and entity relationship extraction have become the main research directions.Its main goal is to identify the medical entities in the EMR text and extract the medical relationships between the entities.This paper systematically expounds the research status of Chinese electronic medical record,points out the important role of named entity recognition and entity relationship extraction in Chinese electronic medical record information extraction,then introduces the latest research results of named entity recognition and relationship extraction algorithm for Chinese electronic medical record information extraction,and analyzes the advantages and disadvantages of each model in each stage.In addition,the current problems of Chinese EMR are discussed,and the future research trend is prospected.

关 键 词:中文电子病历 命名实体识别 实体关系抽取 自然语言处理 深度学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象