检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈志梅[1] 卢莹斌 邵雪卷[1] 赵志诚[1] CHEN Zhi-mei;LU Ying-bin;SHAO Xue-juan;ZHAO Zhi-cheng(School of Electronic and Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
机构地区:[1]太原科技大学电子信息工程学院,太原030024
出 处:《太原科技大学学报》2024年第1期13-18,共6页Journal of Taiyuan University of Science and Technology
基 金:山西省自然科学基金(201901D111263),山西省重点研发计划(201803D121025),山西省研究生教育改革研究课题(20191G173)。
摘 要:受海浪、风力等因素的干扰,深海起重机升沉补偿系统的响应速度缓慢,系统对于负载位移的控制精度较差。为了提高升沉补偿系统响应速度与系统对负载位移的控制精度,保证起重机在各种海况下正常作业,提出了基于CNN-LSTM深度学习网络的滑模预测控制方法。首先,将CNN网络与LSTM网络结合,建立CNN-LSTM深度学习网络控制系统预测模型。其次,通过参考位移与实际位移的误差建立滑模面,并根据幂次函数设计滑模面参考轨迹;采用粒子群算法(PSO)对性能指标进行寻优,得出控制律,根据控制律控制负载实际位移跟随参考位移。最后,进行了仿真研究。结果表明与传统模型预测控制相比,在该方法的控制作用下,系统的响应速度更快,系统对负载位移的控制精度更高,系统的鲁棒性能更强。Due to the interference of ocean waves,wind and other factors,the response speed of the heave compensation system of deep-sea crane is slow,and the control accuracy of the system for load displacement is poor.In order to improve the response speed of heave compensation system and the control accuracy of load displacement,and to ensure the normal operation of crane under various sea conditions,a sliding mode predictive control method based on CNN-LSTM depth learning network is proposed.First of all,the prediction model of CNN-LSTM deep learning networked control system is established by combining CNN network with LSTM network.Secondly,the sliding surface is established by the error between the reference displacement and the actual displacement,and the reference trajectory of the sliding surface is designed according to the power function.The particle swarm optimization algorithm(PSO)is used to optimize the performance index,and the control law is obtained.According to the control law,the actual displacement of the load is controlled to follow the reference displacement.Finally,the simulation research is carried out.The results show that compared with the traditional model predictive control,under the control effect of this method,the response speed of the system is faster,the control precision of the system to the load displacement is higher,and the robust performance of the system is stronger.
关 键 词:升沉补偿 CNN-LSTM 滑模预测控制 粒子群算法
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90