检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙政杰 丁勇[1,2] 李登华[2,3] SUN Zhengjie;DING Yong;LI Denghua(Department of Civil Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Nanjing Hydraulic Research Institute,Nanjing 210094,China;Key Lab of Reservoir Dam Safety of MWR,Nanjing 210094,China)
机构地区:[1]南京理工大学土木工程系,江苏南京210094 [2]南京水利科学研究院,江苏南京210094 [3]水利部水库大坝安全重点实验室,江苏南京210094
出 处:《人民黄河》2024年第3期132-135,142,共5页Yellow River
基 金:国家重点研发计划项目(2022YFC3005502);浙江省水利厅科技计划项目(RB2035);国家自然科学基金资助项目(51979174);国家自然科学基金联合基金资助项目(U2040221);中央级公益性科研院所基本科研业务费专项(Y321004)。
摘 要:大坝监测数据受环境等因素影响,往往存在异常数据,异常数据的检测对于大坝的正常运行起着不可或缺的作用,但是传统异常检测算法对于大坝监测数据往往达不到精度要求。提出了一种基于Prophet-GMM的异常检测算法,利用Prophet算法较好的拟合性能对大坝数据进行拟合,由拟合数据与实测数据求残差序列,再利用GMM算法对残差序列进行聚类,从而准确识别出异常值。结果表明:Prophet-GMM法对于不同类型的大坝监测数据都能准确识别出异常值,与传统检测算法相比,在查准率、查全率及准确率3个检测指标上,均有较为明显的提升。Due to the influence of environment and other factors,there are often abnormal data in dam monitoring data and the detection of abnormal data plays an indispensable role in the normal operation of the dam.However,the accuracy of traditional anomaly detection algo⁃rithms for dam monitoring data often fails to meet the requirements.In this paper,an anomaly detection algorithm based on Prophet GMM was proposed.The better fitting performance of Prophet algorithm was used to fit the dam data and the residual sequence was obtained from the fit⁃ting data and the actual data.Then,the residual sequence was clustered by GMM algorithm to accurately identify the abnormal value.The test results show that the method proposed in this paper can accurately identify outliers for different types of dam monitoring data.Compared with the traditional detection algorithm,it has significantly improved the detection indicators of precision,recall and accuracy.
分 类 号:TV698.2[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49