基于无人机多光谱的高山松地上生物量估测  被引量:4

Estimation of Pinus densata Above-ground Biomass Based on UAV Multi-spectrum

在线阅读下载全文

作  者:杨正道 舒清态 黄金君 周文武 胥丽 罗绍龙 王书伟 Yang Zhengdao;Shu Qingtai;Huang Jinjun;Zhou Wenwu;Xu Li;Luo Shaolong;Wang Shuwei(College of Forestry,Southwest Forestry University,Kunming,Yunnan 650224,China;Guangxi Institute of Botany,Chinese Academy of Sciences,Guilin,Guangxi 541006,China)

机构地区:[1]西南林业大学林学院,云南昆明650224 [2]广西壮族自治区中国科学院广西植物研究所,广西桂林541006

出  处:《广西林业科学》2024年第1期10-17,共8页Guangxi Forestry Science

基  金:国家自然科学基金项目(31860205,31460194)。

摘  要:以机载数据替代卫星影像的方式提高森林生物量估测精度,是目前林业遥感研究的重点领域。以高山松(Pinus densata)林为研究对象,进行无人机(Unmanned Aerial Vehicle,UAV)多光谱影像数据采集;结合36块样地实测数据,采用变异函数确定高山松地上生物量最佳观测窗口;提取并筛选出相关性较强的5个因子,分别建立PLS和RF模型,对飞行区高山松地上生物量进行估测。结果表明,高山松地上生物量最佳观测窗口为球状模型的变程α值5.2 m;RF模型(R^(2)=0.90、RMSE=17.96 t/hm^(2)、P=84.98%)优于PLS模型(R^(2)=0.55、RMSE=38.94 t/hm^(2)、P=71.13%);基于RF模型,飞行区高山松地上生物量均值为130.48 t/hm^(2),总生物量为8343.53 t。Using airborne data instead of satellite images to improve accuracy of forest biomass estimation is key field of forestry remote sensing research.UAV multi-spectral image data acquisition was carried out in Pinus densata forests.Based on measured data of 36 sample sites,the best observation window for P.densata above-ground biomass was determined by variance function.Five factors with strong correlations were extracted and screened,and PLS and RF models were established respectively to estimate P.densata above-ground biomass in flight area.Results showed that the best observation window for P.densata above-ground biomass was variable range α value of 5.2 m in spherical model.RF model(R^(2)=0.90,RMSE=17.96 t/hm^(2),P=84.98%)was superior to PLS model(R^(2)=0.55,RMSE=38.94 t/hm^(2),P=71.13%).Based on RF model,average P.densata above-ground biomass in flight area was 130.48 t/hm2,and total biomass was 8343.53 t.

关 键 词:无人机 变异函数 生物量 高山松 

分 类 号:S771.8[农业科学—森林工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象