检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何德峰[1] 操佩颐 岑江晖 HE De-feng;CAO Pei-yi;CEN Jiang-hui(College of Information Engineering,Zhejiang University of Technology,Hangzhou Zhejiang 310023,China)
机构地区:[1]浙江工业大学信息工程学院,浙江杭州310023
出 处:《控制理论与应用》2024年第2期355-363,共9页Control Theory & Applications
基 金:国家自然科学基金项目(62173303);浙江省重点研发计划项目(2020C03056)资助.
摘 要:考虑具有状态和控制约束的仿射非线性系统多目标安全控制问题,本文提出一种保证安全和稳定的多目标安全模型预测控制(MOSMPC)策略.首先通过理想点逼近方法解决多个控制目标的冲突问题.其次,利用控制李雅普诺夫障碍函数(CLBF)参数化局部控制律,并确定系统不安全域.在此基础上,构造非线性系统的参数化双模控制器,减少在线求解模型预测控制(MPC)优化问题的计算量.进一步,应用双模控制原理和CLBF约束,建立MOSMPC策略的递推可行性和闭环系统的渐近稳定性,并保证闭环系统状态避开不安全域.最后,以加热系统的多目标控制为例,验证了本文策略的有效性.This paper considers the multi-objective safe control problem of input-affine nonlinear systems subject to the constraints on the state and control.A new multi-objective safe model predictive control(MOSMPC)scheme is proposed for the system with guaranteed safety and stability.First,the utopia-point approximation method is adopted to solve the conflicting problem of multiple control objectives.Second,the control Lyapunov-barrier function(CLBF)is used to parameterize the local control laws of the system and determine the unsafe domains of the system.Then the parameterized dual-mode controller of the nonlinear system is constructed to reduce the computational amount of online solving the MPC optimization problem.Moreover,recursive feasibility of the MOSMPC scheme and asymptotic stability of the closed-loop system are established via the dual-mode control principle and the CLBF constraint,which ensures that the states of the closed-loop system can avoid the unsafe domain.Finally,an example of multi-objective control of a heating system is used to verify the effectiveness of the proposed strategy.
关 键 词:非线性系统 模型预测控制 多目标控制 安全控制 稳定性
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222